[probas/ex1467] La loi conjointe de deux variables aléatoires \(X\) et \(Y\) est donnée par le tableau : \[\begin{array}{|c|c|c|c|} \hline X\setminus Y&0&1&2\\\hline 0&1/18&1/9&1/6\\\hline 1&1/9&1/18&1/9\\\hline 2&1/6&1/6&1/18\\\hline\end{array}\] Calculer l’espérance conditionnelle de \(Y\) sachant \(X\), puis de \(X\) sachant \(Y\).
[probas/ex1467]
[probas/ex1744] La loi conjointe d’un couple de variables aléatoires \((X,Y)\) est donnée par la formule : \[\mathbf{P}(X=x_i,Y=y_j)=\cases{ {1\over18}(2x_i+y_j)&si $x_i=1$, 2, $y_j=1$, 2,\cr0&sinon.\cr}\] Calculer la variance conditionnelle de \(Y\) sachant \(x_i=2\).
[probas/ex1744]
[planches/ex2834] ccp PC 2017 Soit \(p\in\left]0,1\right[\). On pose \(q=1-p\). On considère une variable aléatoire \(X\), à valeurs dans \(\mathbf{N}\), suivant la loi géométrique de paramètre \(p\).
[planches/ex2834]
Quelle est la loi de \(X+1\) ?
Soit \(Y\) une variable aléatoire suivant elle aussi la loi géométrique de paramètre \(p\) et indépendante de \(X\). On pose \(Z=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\).
Montrer que \(\mathbf{P}(X\geqslant n)=q^n\). En déduire \(\mathbf{P}(Z\geqslant n)\), puis la loi de \(Z\) et son espérance.
Soit \(r\in\left]0,1\right[\). On tire à pile ou face avec la probabilité \(r\) de tirer pile. On note \(T\) la variable aléatoire « nombre de faces avant le premier pile » et, pour chaque \(i\geqslant 1\), \(E_i\) l’événement « tirer face au \(i\)-ième lancer ».
Exprimer \(T=k\) à l’aide des \(E_i\) et en déduire \(\mathbf{P}(T=k)\), ainsi que \(\mathbf{E}(T)\).
Soient \(X\) et \(Y\) deux variables aléatoires indépendantes à valeurs dans \(\mathbf{N}\) suivant la même loi. On pose \(Z=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\). On note, pour tout \(k\in\mathbf{N}\), \(p_k=\mathbf{P}(X=k)\).
Calculer \(\mathbf{P}(Z=i,|X-Y|=k)\), puis \(\mathbf{P}(|X-Y|=k)\).
[concours/ex4746] escp S 2003
[concours/ex4746]
Pour \(m\geqslant 1\), on considère une série statistique \((M_i)_{1\leqslant i\leqslant m}\) à deux variables. La première variable est notée \(Z\), la seconde \(T\) et on écrit \(M_i(z_i,t_i)\) pour tout \(i\) de \(\{1,\ldots,m\}\).
Pour les applications numériques on prend \(\overline{Z}=\overline{T}=10\), \(V(Z)=V(T)=9\) et \({\rm cov}(Z,T)=4\) et on pose \(A=\left(\begin{array}{cc}9&4\\ 4&9\end{array}\right)\).
On identifie les éléments de \(\mathbf{R}^2\) et de \({\cal M}_{2,1}(\mathbf{R})\).
Diagonaliser \(A\) dans une base orthonormale \((e_1,e_2)\) de \(\mathbf{R}^2\) pour le produit scalaire usuel.
Déterminer une matrice \(P\) de \({\cal M}_2(\mathbf{R})\) telle que \(P^{-1}={}^tP\) et \(^tPAP\) soit diagonale.
Pour tout \((x,y)\) de \(\mathbf{R}^2\) on pose \(f(x,y)= \left(\begin{array}{cc}x&y\end{array}\right)\times A\times \left(\begin{array}{c}x\\ y\end{array}\right)\).
Montrer que l’application \((x,y)\mapsto \displaystyle{f(x,y)\over x^2+y^2}\) admet un minimum et un maximum sur \(E=\mathbf{R}^2\setminus\{(0,0)\}\), extremums que l’on déterminera (on pourra travailler dans la base \((e_1,e_2)\)).
En déduire les \((\alpha,\beta)\) de \(\mathbf{R}^2\) tels que \(\alpha^2+\beta^2=1\) qui donnent une série statistique \(\alpha\,Z+\beta\,T\) de variance maximale ; même question pour \(\alpha Z+\beta T\) de variance minimale. Déterminer les extremums.
Si l’on appelle \(u_1=(\alpha_1,\beta_1)\) un couple qui donne une série statistique de variance minimale, déterminer une équation de la droite passant par le point moyen de la série et dirigée par ce vecteur.
Montrer que cette droite est celle qui réalise le minimum de la somme des carrés des distances des points \(M_i\) à une droite \(\Delta\) passant par le point moyen \(\Omega(\overline Z,\overline T)\), d’équation \(\alpha\,x+\beta\,y+c=0\) dans le plan \(\mathbf{R}^2\) muni de sa structure euclidienne canonique (on pourra utiliser la formule \(d(M_i,\Delta)=\displaystyle{|\alpha\,z_i+\beta\,t_i+c|\over\sqrt{\alpha^2+\beta^2}}\) qui donne la distance d’un point \(M_i\) à la droite \(\Delta\) d’équation \(\alpha\,x+\beta\,y+c=0\)).
Qu’en est-il si l’on n’impose plus à la droite de passer par \(\Omega\) ?
Déterminer les \((\alpha,\beta)\) tels que \(\alpha\geqslant 0\), \(\beta\geqslant 0\) et \(\alpha+\beta=1\) pour lesquels la série statistique \(\alpha Z+\beta T\) admet une variance maximale que l’on déterminera ; même question pour \(\alpha Z+\beta T\) de variance minimale.
[concours/ex9106] hec E 2010 Soit \(X\) une variable aléatoire définie sur un espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\), qui suit la loi binomiale \(\mathscr{B}(n,p)\), avec \(n\geqslant 2\) et \(0<p<1\).
[concours/ex9106]
On définit sur \((\Omega,\mathscr{A},\mathbf{P})\) une variable aléatoire \(Y\) de la façon suivante :
pour tout \(k\) de \([[1,n]]\), la réalisation de l’événement \([X=k]\) entraîne celle de l’événement \([Y=k]\) ;
la loi conditionnelle de \(Y\) sachant \([X=0]\) est la loi uniforme sur \([[1,n]]\).
Question de cours : Le modèle binomial.
Déterminer la loi de probabilité de \(Y\).
Calculer l’espérance \(\mathbf{E}(Y)\) de \(Y\).
Déterminer la loi de probabilité conditionnelle de \(Y\) sachant \([X\neq0]\).
Calculer l’espérance, notée \(\mathbf{E}(Y/X\neq0)\), de la loi conditionnelle de \(Y\) sachant \([X\neq0]\).
Vous pouvez signaler le nombre d'énoncés visibles sur chaque page de résultats