[concours/ex4955] escp B/L 2001 On considère une entreprise de \(400\) salariés. La moyenne et l’écart-type du salaire mensuel de tout le personnel sont respectivement \(\overline{x} = 10000\) F et \(\sigma (x) = 2000\) F. Le salaire le plus bas est \(6000\) F et le salaire le plus élevé est \(30000\) F.
[concours/ex4955]
À la suite d’une grève, des négociations salariales s’ouvrent. à l’issue de celles-ci, le salaire de chaque salarié sera majoré en appliquant la formule générale suivante : \(y_i = a x_i + b\), où :
le nombre \(x_i\) représente le salaire du salarié \(i\) avant l’augmentation,
le nombre \(y_i\) représente le salaire du salarié \(i\) après l’augmentation,
les coefficients \(a\) et \(b\) sont à déterminer.
Trois propositions sont sur la table des négociations :
augmenter la masse salariale de \(5 \%\) tout en laissant inchangée la dispersion des salaires mesurée par l’écart-type.
augmenter la masse salariale de \(5 \%\) tout en laissant inchangée la dispersion relative des salaires mesurée par le coefficient de variation \(C V =\displaystyle{\hbox{écart-type} \over {\rm moyenne}}\).
réduire de \(2 \%\) la dispersion des salaires mesurée par l’écart-type tout en augmentant la masse salariale d’un montant tel qu’aucun salaire ne diminue.
Calculer la masse salariale et le coefficient de variation des salaires avant l’augmentation.
Pour chacune des trois propositions en présence :
Calculer les paramètres \(a\) et \(b\) à utiliser. (Pour \({\rm P}_3\) on prendra la plus petite valeur de \(b\) vérifiant toutes les conditions).
Calculer la moyenne du nouveau salaire mensuel.
Autour de la table de négociations, on trouve trois groupes : des représentants de la direction, des représentants des cadres et des représentants des salariés non cadres, chaque groupe ayant formulé une des trois propositions.
Calculer, en pourcentage, l’augmentation de la masse salariale correspondant à la proposition \({\rm P}_3\).
Donner l’allure de la représentation graphique, dans un même repère, du nouveau salaire \(y\) en fonction de l’ancien \(x\) pour chacune des propositions. On s’intéressera uniquement à la position relative de ces droites.
Identifier, en utilisant les résultats précédents, de quel groupe émane chacune des propositions.
[probas/ex1741] Soit \((X,Y)\) un couple de variables aléatoires. Montrer que : \[[E(XY)]^2\leqslant E(X^2)\,E(Y^2).\] Cette inégalité est connue sous le nom d’inégalité de Cauchy-Schwarz.
[probas/ex1741]
[planches/ex4055] ccp MP 2018 Soient \(n\in\mathbf{N}\), \(X\) et \(Y\) deux variables aléatoires à valeurs dans \(\{1,\ldots,n+1\}\) telles que, pour tout \((i,j)\in\{1,\ldots,n+1\}^2\), \(\mathbf{P}(X=i,Y=j)=a_{i,j}=\lambda\displaystyle{n\choose i-1}{n\choose j-1}\), où \(\lambda\in\mathbf{R}_+^*\).
[planches/ex4055]
Montrer que \(\lambda=\displaystyle{1\over4^n}\).
Déterminer les lois de \(X\) et de \(Y\).
Les variables \(X\) et \(Y\) sont-elles indépendantes ?
Trouver à l’aide de la variable aléatoire \(X-1\) l’espérance et la variance de \(X\).
On note \(B=(b_{i,j})_{(i,j)\in[[1,n+1]]^2}\in\mathscr{M}_{n+1}(\mathbf{R})\) avec \(b_{i,j}=\mathbf{P}(Y=i|X=j)\).
Calculer \(B^2\) .
Déterminer les valeurs propres de \(B\). La matrice \(B\) est-elle diagonalisable ? Déterminer la dimension des sous-espaces propres associés.
[planches/ex9392] ens PC 2023 Soient \(X\), \(Y\) deux variables aléatoires à valeurs dans \(\{1,2,3\}\) telles que \(Y\) suive la loi uniforme sur \(\{1,2,3\}\) et \(\mathbf{P}(X=1)=\displaystyle\frac{1}{2}\), \(\mathbf{P}(X=2)=\mathbf{P}(X=3)=\displaystyle\frac{1}{4}\).
[planches/ex9392]
Quelle est la valeur minimale de \(\mathbf{E}((X-Y)^2)\) ?
[planches/ex5660] ccp PSI 2019 On considère \(2n\) lapins sélectionnés aléatoirement dans un enclos à lapins. La probabilité qu’un lapin soit mâle est \(1/2\). On note \(M\) la variable aléatoire égale au nombre de lapins mâles obtenus et \(C\) la variable aléatoire égale au le nombre de couples possibles (un lapin mâle \(+\) un lapin femelle).
[planches/ex5660]
Donner la loi de \(M\).
Donner une relation entre \(C\) et \(M\).
Donner la loi de \(C\).
Calculer l’espérance de \(C\).
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)