[probas/ex2300] Vrai ou faux ?
[probas/ex2300]
Si \(X\) et \(Y\) sont deux variables possédant une variance et si \(X\leqslant Y\), alors on a : \(\mathbf{V}(X)\leqslant\mathbf{V}(Y)\).
[oraux/ex8341] mines PSI 2015
[oraux/ex8341]
Soient \(X\) et \(Y\) deux variables aléatoires réelles telles que \(X^2\) et \(Y^2\) admettent une espérance. Montrer que \(XY\) admet une espérance.
Soient \(a\in[0,1]\) et \(X\) une variable aléatoire positive admettant une espérance. Montrer l’inégalité \((1-a)\mathbf{E}(X)\leqslant\mathbf{E}(X.\mathbf1_{X\geqslant a\mathbf{E}(X)})\).
[planches/ex9392] ens PC 2023 Soient \(X\), \(Y\) deux variables aléatoires à valeurs dans \(\{1,2,3\}\) telles que \(Y\) suive la loi uniforme sur \(\{1,2,3\}\) et \(\mathbf{P}(X=1)=\displaystyle\frac{1}{2}\), \(\mathbf{P}(X=2)=\mathbf{P}(X=3)=\displaystyle\frac{1}{4}\).
[planches/ex9392]
Quelle est la valeur minimale de \(\mathbf{E}((X-Y)^2)\) ?
[examen/ex0565] centrale PC 2023 On dispose d’une pièce donnant pile avec un probabilité \(p\in\left]0,1\right[\). On lance cette pièce jusqu’à obtenir pile. On note \(N\) le nombre de lancers nécessaires pour obtenir ce premier pile. On lance ensuite \(N\) fois cette pièce et on note \(X\) le nombre de pile obtenus au cours de ces \(N\) lancers.
[examen/ex0565]
Quelle est la loi de \(N\) ? Donner la loi du couple \((N,X)\).
En déduire la loi de \(X\).
Soit \(\lambda\in\left]0,1\right[\). Soient \(U\), \(V\) deux variables aléatoires indépendantes telles que \(U\sim\mathscr{B}(\lambda)\) et \(V\sim\mathscr{G}(\lambda)\). Trouver \(\lambda\) tel que \(UV\sim X\).
Calculer \(\mathbf{E}(X)\) et \(\mathbf{V}(X)\).
[concours/ex4924] escp S 2001
[concours/ex4924]
Soient deux entiers naturels \(n\) et \(r\) avec \(0\leqslant r\leqslant n\).
On définit la fonction \(F_{r,n}\) sur \(\mathbf{R}\) par : \[\forall x\in\mathbf{R},\quad F_{r,n}(x)=\sum\limits\limits_{k=r}^n{k\choose r} x^k.\]
Montrer que pour tout \(x\) réel, on a \((1-x)F_{r,n}(x)\ =\ xF_{r-1,n-1}(x) - \displaystyle{n\choose r} x^{n+1}\).
Soit \(x\in\left]0,1\right[\) et \(r\in \mathbf{N}\) fixés. Donner un équivalent simple de \(\displaystyle{n\choose r}x^{n+1}\) quand \(n\) tend vers l’infini.
Montrer que pour tout \(x\) tel que \(0<x<1\) et \(r\in\mathbf{N}\) fixés, \(F_{r,n}(x)\) admet une limite lorsque \(n\) tend vers l’infini et déterminer cette limite.
On dispose de deux pièces de monnaie. La première pièce donne « Pile » avec la probabilité \(p\) et la seconde avec la probabilité \(q=1-p\). (\(p\in\left]0,1\right[\)).
on lance la première pièce jusqu’à obtenir pour la première fois « Pile ». Soit \(N\) le nombre de lancers effectués.
On lance alors \(N\) fois la seconde pièce et on note \(X\) la variable aléatoire égale au nombre de « Pile » obtenus durant ces \(N\) tirages.
Déterminer la loi de \(X\).
Calculer son espérance. Commenter les cas où \(p=q=1/2\) et où \(p\) est de la forme \(1/r\).
[probas/ex0241] Une urne contient \(N\) boules numérotées de 1 à \(N\). On effectue \(N\) tirages avec remise et on note \(Z_n\) le nombre de numéros non encore sortis à l’issue du \(n\)-ième tirage.
[probas/ex0241]
Déterminer la loi de \(Z_1\).
Calculer \(E(Z_n)\).
Déterminer la probabilité d’obtenir au \(n\)-ième tirage un numéro qui n’est pas encore sorti.
[probas/ex0326] Un sac contient 6 jetons numérotés de 1 à 6. On en tire successivement 3 sans remise. Soit \(X\) la variable aléatoire, qui à chaque tirage, associe le plus grand des numéros tirés, et \(Y\) celle qui associe le numéro intermédiaire.
[probas/ex0326]
Déterminer les lois de \(X\) et de \(Y\).
Calculer \(E(X)\) et \(E(Y)\).
Déterminer la loi du couple \((X,Y)\).
[probas/ex1467] La loi conjointe de deux variables aléatoires \(X\) et \(Y\) est donnée par le tableau : \[\begin{array}{|c|c|c|c|} \hline X\setminus Y&0&1&2\\\hline 0&1/18&1/9&1/6\\\hline 1&1/9&1/18&1/9\\\hline 2&1/6&1/6&1/18\\\hline\end{array}\] Calculer l’espérance conditionnelle de \(Y\) sachant \(X\), puis de \(X\) sachant \(Y\).
[probas/ex1467]
[concours/ex4638] escp S 2004
[concours/ex4638]
Compléter les lignes de programme suivantes pour en faire un programme complet :
randomize; N:=random(m)+1;X:=0; For i:=1 to N Do X:=X+random(2); Writeln(N,’ ’,X);
randomize;
N:=random(m)+1;X:=0;
For i:=1 to N Do X:=X+random(2);
Writeln(N,’ ’,X);
(on rappelle que lorsque \(a\) est un integer, random(a) renvoie une valeur integer au hasard comprise entre 0 et \(a-1\), et que la procédure randomize permet d’initialiser la fonction random.)
integer
random(a)
randomize
random
On suppose que la première valeur affichée est \(4\). Quelles sont les valeurs possibles pour la seconde valeur affichée ?
On suppose que le programme précédent simule une expérience aléatoire. Quelle est alors la loi suivie par la variable aléatoire simulée par \(N\), son espérance, sa variance ?
Préciser \(X(\Omega)\) et calculer, pour tout couple \((i,k)\), \(P(X=i/N=k)\). En déduire la loi de \(X\).
Déterminer l’espérance de \(X\).
[probas/ex2316] Vrai ou faux ?
[probas/ex2316]
Soit \(X\) et \(Y\) deux variables aléatoires ayant même loi et admettant une variance. Alors \(\mathbf{E}(XY)=\mathbf{E}(X^2)\).
[planches/ex8840] centrale PC 2022 Deux joueurs jouent à tirer l’un après l’autre dans leur propre urne des boules avec remises. Dans l’urne du joueur 1, il y a une proportion \(p_1\) de boules rouges. Dans l’urne du joueur 2, il a une proportion \(p_2\) de boules rouges. La partie se joue en plusieurs manches : à la première manche, le joueur 1 tire une boule dans son urne et la remet, à la deuxième manche, le joueur 2 tire une boule dans son urne et la remet et ainsi de suite… Le jeu s’arrête lorsqu’un joueur a tiré une boule rouge.
[planches/ex8840]
Montrer que le jeu s’arrête presque sûrement.
Proposer des proportions \(p_1\) et \(p_2\) de sorte que les joueurs aient autant de chance de gagner chacun.
Donner l’espérance du nombre de manches jouées.
[oraux/ex6081] escp S 2014 On considère une succession (éventuellement infinie) de lancers d’une pièce. On suppose que la probabilité d’obtenir Pile lors d’un lancer est \(1-x\) et que la probabilité d’obtenir Face est \(x\). Les résultats des différents lancers sont supposés indépendants.
[oraux/ex6081]
On suppose que cette expérience est modélisée par un espace probabilisé \((\Omega,\mathscr{A},P)\).
Pour \(n\in\mathbf{N}^*\), on note \(S_n\) le nombre de fois où l’on a obtenu Pile au cours des \(n\) premiers lancers et \(T_n\) le numéro du lancer où l’on obtient Pile pour la \(n\)-ième fois.
Préciser la loi de \(S_n\), son espérance et sa variance.
Pour tout entier \(k\) et tout entier non nul \(n\), montrer que : \[P(T_n=n+k)={k+n-1\choose n-1}(1-x)^nx^k.\]
Montrer que \(\displaystyle\sum\limits_{k=0}^\infty P(T_n=n+k)=1\). Quelle est la signification de ce résultat ?
Montrer que \(T_n\) admet une espérance et calculer \(E(T_n)\).
Calculer de même \(E(T_n(T_n+1))\) ; en déduire la variance de \(T_n\).
Soient \(a\) un réel strictement positif et \(\lambda\) un réel strictement supérieur à \(1\). Un joueur joue de la manière suivante : lors du \(k\)-ième lancer il joue la somme \(a^{k-1}\) euros.
Si Pile sort, il reçoit la somme de \(\lambda a^{k-1}\) euros et il perd sa mise.
Si Face sort, il perd sa mise.
Puis on passe au lancer suivant…
On note \(G_n\) la somme des gains (positifs ou négatifs) du joueur après son \(n\)-ième succès. On suppose \(a>1\).
Exprimer \(G_1\) en fonction de \(a^{T_1}\).
Après avoir justifié son existence, calculer \(E(G_1)\).
Exprimer \(G_2\) en fonction de \(a^{T_1}\) et \(a^{T_2}\).
[planches/ex7419] ccinp PC 2021 Soient \(X\) et \(Y\) deux variables aléatoires définies sur un même espace probabilisé. On suppose que \(X\) suit la loi binomiale de paramètres \(n\) et \(p\) avec \(p\in\left]0,1\right[\) et que \(Y\) suit la loi uniforme sur \(\{0,1,\ldots,n\}\).
[planches/ex7419]
On définit la variable aléatoire \(Z\) par \(\forall\omega\in\Omega\), \(Z(\omega)=\cases{X(\omega)&si $X(\omega)\neq0$\cr Y(\omega)&si $X(\omega)=0$.}\)
Déterminer la loi de \(Z\) et son espérance.
[concours/ex4849] escp S 2002 On considère les lancers successifs (indépendants) d’une pièce non pipée et on note \(T\) le nombre de Face précédant le premier Pile. On propose à un joueur la suite de paris suivante :
[concours/ex4849]
Pari \(P_0\): si \(T=0\), on perd \(1\) Euro; si \(T=1\), on gagne \(3\) Euros; sinon on ne gagne ni ne perd rien;
Pari \(P_1\): si \(T=1\), on perd \(4\) Euros; si \(T=2\), on gagne \(9\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_2\): si \(T=2\), on perd \(10\) Euros ; si \(T=3\), on gagne \(27\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_n\): si \(T=n\), on perd \(3^n+1\) Euros; si \(T=n+1\), on gagne \(3^{n+1}\) Euros; sinon, on ne gagne ni ne perd rien;
Chaque pari est-il favorable au joueur ?
Calculer l’espérance du gain \(\Gamma\) si le joueur parie sur la suite de tous les résultats.
[concours/ex4916] escp S 2001 Soit \(n\) un entier naturel non nul. Une boîte contient \((2n+1)\) jetons bicolores (une face est blanche, l’autre est noire). Les jetons sont numérotés de \(1\) à \(2n+1\) sur leur face blanche, les faces noires ne portant pas de numéro.
[concours/ex4916]
On lance simultanément tous les jetons et on observe leurs faces supérieures.
Une et une seulement des deux couleurs apparaît un nombre impair de fois. Soit \(X\) la variable aléatoire associée à ce nombre.
Calculer son espérance et sa variance.
Suite au lancer, on ramasse les jetons de la couleur apparaissant un nombre impair de fois et on note les numéros de leur face blanche. Soit \(Y\) la variable aléatoire représentant le plus petit de ces nombres.
Soit \(k\in[[0,n]]\), déterminer la loi conditionnelle de \(Y\), conditionnée par l’événement \((X=2k+1)\).
En déduire la loi de \(Y\). Calculer son espérance.
[probas/ex1099] On lance deux dés. Soit \(X\) la valeur du premier dé et \(Y\) la somme des deux valeurs. Calculer la fonction génératrice des moments conjoints de \(X\) et \(Y\).
[probas/ex1099]
[probas/ex0253] Une urne contient 7 boules rouges et 5 blanches. On choisit au hasard un nombre entier \(N\), \(1\leqslant N\leqslant 5\), puis on tire \(N\) boules de l’urne.
[probas/ex0253]
Calculer l’espérance et la variance du nombre de boules blanches obtenues :
le tirage ayant lieu avec remise ;
le tirage ayant lieu sans remise.
Sachant que l’on a obtenu 3 boules rouges, calculer \(E(N)\) :
[concours/ex5183] escp S 2007 On dispose d’une pièce de monnaie donnant « pile » avec la probabilité \(p\) et « face » avec la probabilité \(q=1-p\) (avec \(p\in\left]0,1\right[\)).
[concours/ex5183]
On lance cette pièce, les lancers étant indépendants les uns des autres, et on note \(N\) le nombre aléatoire de lancers nécessaires à la première apparition de « pile » (on pose \(N=-1\) si « pile » n’apparaît jamais).
Quand « pile » apparaît au bout de \(n\) lancers, on effectue une série de \(n\) lancers avec cette même pièce et on note \(X\) le nombre de « pile » obtenus au cours de cette série.
Quelle est la loi de \(N\) ?
Déterminer la loi du couple \((N,X)\).
Calculer \(P(X=0)\) et \(P(X=1)\).
Pour tout entier naturel \(k\) non nul, exprimer \(P(X=k)\) sous forme d’une série.
Calculer la somme de cette série.
On rappelle que si \(|x|<1\) alors \(\displaystyle \sum\limits\limits_{k=r}^{+\infty}{k\choose r}x^{k-r}=\displaystyle{1\over(1-x)^{r+1}}\)
Déterminer l’espérance de \(X\) par deux méthodes : une première fois par calcul direct, une deuxième en utilisant la formule de l’espérance totale. Pourquoi ce résultat est-il raisonnable ?
[concours/ex4955] escp B/L 2001 On considère une entreprise de \(400\) salariés. La moyenne et l’écart-type du salaire mensuel de tout le personnel sont respectivement \(\overline{x} = 10000\) F et \(\sigma (x) = 2000\) F. Le salaire le plus bas est \(6000\) F et le salaire le plus élevé est \(30000\) F.
[concours/ex4955]
À la suite d’une grève, des négociations salariales s’ouvrent. à l’issue de celles-ci, le salaire de chaque salarié sera majoré en appliquant la formule générale suivante : \(y_i = a x_i + b\), où :
le nombre \(x_i\) représente le salaire du salarié \(i\) avant l’augmentation,
le nombre \(y_i\) représente le salaire du salarié \(i\) après l’augmentation,
les coefficients \(a\) et \(b\) sont à déterminer.
Trois propositions sont sur la table des négociations :
augmenter la masse salariale de \(5 \%\) tout en laissant inchangée la dispersion des salaires mesurée par l’écart-type.
augmenter la masse salariale de \(5 \%\) tout en laissant inchangée la dispersion relative des salaires mesurée par le coefficient de variation \(C V =\displaystyle{\hbox{écart-type} \over {\rm moyenne}}\).
réduire de \(2 \%\) la dispersion des salaires mesurée par l’écart-type tout en augmentant la masse salariale d’un montant tel qu’aucun salaire ne diminue.
Calculer la masse salariale et le coefficient de variation des salaires avant l’augmentation.
Pour chacune des trois propositions en présence :
Calculer les paramètres \(a\) et \(b\) à utiliser. (Pour \({\rm P}_3\) on prendra la plus petite valeur de \(b\) vérifiant toutes les conditions).
Calculer la moyenne du nouveau salaire mensuel.
Autour de la table de négociations, on trouve trois groupes : des représentants de la direction, des représentants des cadres et des représentants des salariés non cadres, chaque groupe ayant formulé une des trois propositions.
Calculer, en pourcentage, l’augmentation de la masse salariale correspondant à la proposition \({\rm P}_3\).
Donner l’allure de la représentation graphique, dans un même repère, du nouveau salaire \(y\) en fonction de l’ancien \(x\) pour chacune des propositions. On s’intéressera uniquement à la position relative de ces droites.
Identifier, en utilisant les résultats précédents, de quel groupe émane chacune des propositions.
[planches/ex6357] hec E 2021 Le jeu de mémory est composé de \(n\) (\(n\) étant un entier naturel non nul) paires d’images deux à deux distinctes, sur une seule des \(n\) paires sont représentés des chatons. Ces images sont réparties en deux tas : chaque paire aura une de ses images dans chaque tas. Les images sont posées face cachée. À chaque étape, une carte de chaque tas est retournée. Si les deux cartes retournées forment la paire de chatons, alors le jeu s’arrête, sinon les cartes sont retournées et les tas à nouveau mélangés.
[planches/ex6357]
Deux joueurs \(A\) et \(B\) jouent en parallèle. Ils possèdent chacun leur propre jeu de mémory et jouent indépendamment, mais réalisent leurs étapes en même temps. On note \(X\) (respectivement \(Y\)) le nombre d’étapes de jeu effectuées par le joueur \(A\) (respectivement \(B\)) lorsqu’il trouve la paire de chatons. On note de plus : \(M = \mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\). On admet que \(M\) est une variable aléatoire.
Question de cours : Énoncer la définition de l’espérance d’une variable aléatoire discrète.
Donner la loi de \(X\), son espérance et sa variance.
Pour tout entier naturel \(k\), déterminer \(\mathbf{P}\big( {M \leqslant k} \big)\).
Montrer que la série \(\displaystyle\sum\limits_{k \geqslant 0} \mathbf{P}\big( {M > k} \big)\) converge.
Montrer que pour tout entier naturel \(K\) non nul : \[\displaystyle\sum\limits_{k=1}^{K} k \, \mathbf{P}\big( {M = k} \big) \ = \ -K \, \mathbf{P}\big( {M > K} \big) + \displaystyle\sum\limits_{k=0}^{K-1} \mathbf{P}\big( {M > K} \big)\]
En déduire que \(M\) admet une espérance.
Montrer que la suite \(\Big(K \, \mathbf{P}\big( {M>K} \big) \Big)_{K \geqslant 0}\) converge vers \(0\).
Déterminer \(\mathbf{E}(M)\).
Le clic gauche sur un énoncé ou une référence d'exercice rajoute (ou enlève) cet exercice à la liste des exercices sélectionnés