[examen/ex0901] escp courts S 2021 Soit \(X\), \(Y\) deux variables aléatoires indépendantes suivant une loi uniforme sur \([[1,n]]\), soit \(g\) une bijection de \([[1,n]]\) sur lui-même.
[examen/ex0901]
On pose \(T=g(X)\) et \(Z=\mathbf1_{[Y\leqslant g(X)]}\).
Quelle est la loi de \(T\) ? Montrer que \(n\mathbf{E}(Z)=\mathbf{E}(T)\).
Que dire de leurs variances ?
[probas/ex0169] hec 1995 On considère un entier naturel \(n\) non nul, un réel \(p\) de \(\left]0,1\right[\) ; \(X\) est une variable aléatoire avec \(X\hookrightarrow\mathscr{B}(n,p)\).
[probas/ex0169]
Les valeurs prises par \(X\) sont affichées par un compteur défaillant ; lorsqu’il doit afficher 0, il affiche en fait au hasard un nombre compris entre 1 et \(n\) ; sinon il affiche le bon résultat.
Soit \(Y\) la variable aléatoire correspondant au numéro affiché par le compteur. Donner la loi de \(Y\) et \(E(Y)\).
[probas/ex1467] La loi conjointe de deux variables aléatoires \(X\) et \(Y\) est donnée par le tableau : \[\begin{array}{|c|c|c|c|} \hline X\setminus Y&0&1&2\\\hline 0&1/18&1/9&1/6\\\hline 1&1/9&1/18&1/9\\\hline 2&1/6&1/6&1/18\\\hline\end{array}\] Calculer l’espérance conditionnelle de \(Y\) sachant \(X\), puis de \(X\) sachant \(Y\).
[probas/ex1467]
[probas/ex1090] Des ampoules de type \(i\) fonctionnent pendant une durée aléatoire de moyenne \(\mu_i\) et d’écart-type \(\sigma_i\), \(i=1\), 2. Une ampoule choisie au hasard dans une boîte d’ampoules est de type 1 avec une probabilité \(p\) et de type 2 avec une probabilité \(1-p\). Soit \(X\) la durée de vie de cette ampoule. Trouver \(E(X)\) et \(V(X)\).
[probas/ex1090]
[probas/ex0019] Soient \(X\) et \(Y\) deux V.A.R. discrètes telles que : \[\left\{\begin{array}{l} E(X)=E(Y)=m\ (m\neq0),\\V(X)=\sigma_1^2,\ V(Y)=\sigma_2^2,\\ \mathop{\mathchoice{\hbox{cov}}{\hbox{cov}}{\mathrm{cov}}{\mathrm{cov}}}\nolimits(X,Y)=\mu,\ V(X-Y)\neq0.\end{array}\right.\] Soit \(Z=aX+bY\). Déterminer \(a\) et \(b\) pour que \(E(Z)=m\) et que \(V(Z)\) soit minimale.
[probas/ex0019]
[examen/ex0894] escp courts S 2021 Dans une urne contenant \(n\) boules numérotées de 1 à \(n\), on pioche une boule ; si elle porte le numéro \(k\), on remet alors \(k\) boules de numéro \(k\) dans l’urne. On note \(X\), le numéro de la première boule, \(Y\) celui de la deuxième.
[examen/ex0894]
Donner la loi de \(X\), puis la loi de \(Y\), en fonction de \(H_n=\displaystyle\sum\limits_{m=n+1}^{2n}{1\over m}\).
Calculer l’espérance de \(Y\).
[planches/ex6846] mines MP 2021 Soient \(n\in\mathbf{N}^*\), \((\Omega,\mathscr{T},\mathbf{P})\) un espace probabilité, \(X\) et \(Y\) deux variables aléatoires indépendantes définies sur \((\Omega,\mathscr{T},\mathbf{P})\) suivant la loi uniforme sur \(\{1,2,\ldots,n\}\), \(m\in\{1,\ldots,n\}\). Soit \(Z\) la variable aléatoire telle que \(Z(\omega)=X(\omega)\) si \(Y(\omega)\leqslant m\) et \(Z(\omega)=Y(\omega)\) sinon.
[planches/ex6846]
Déterminer la loi de \(Z\). Calculer \(\mathbf{E}(Z)\).
Déterminer les entiers \(m\) qui maximisent l’espérance de \(Z\).
[planches/ex2834] ccp PC 2017 Soit \(p\in\left]0,1\right[\). On pose \(q=1-p\). On considère une variable aléatoire \(X\), à valeurs dans \(\mathbf{N}\), suivant la loi géométrique de paramètre \(p\).
[planches/ex2834]
Quelle est la loi de \(X+1\) ?
Soit \(Y\) une variable aléatoire suivant elle aussi la loi géométrique de paramètre \(p\) et indépendante de \(X\). On pose \(Z=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\).
Montrer que \(\mathbf{P}(X\geqslant n)=q^n\). En déduire \(\mathbf{P}(Z\geqslant n)\), puis la loi de \(Z\) et son espérance.
Soit \(r\in\left]0,1\right[\). On tire à pile ou face avec la probabilité \(r\) de tirer pile. On note \(T\) la variable aléatoire « nombre de faces avant le premier pile » et, pour chaque \(i\geqslant 1\), \(E_i\) l’événement « tirer face au \(i\)-ième lancer ».
Exprimer \(T=k\) à l’aide des \(E_i\) et en déduire \(\mathbf{P}(T=k)\), ainsi que \(\mathbf{E}(T)\).
Soient \(X\) et \(Y\) deux variables aléatoires indépendantes à valeurs dans \(\mathbf{N}\) suivant la même loi. On pose \(Z=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\). On note, pour tout \(k\in\mathbf{N}\), \(p_k=\mathbf{P}(X=k)\).
Calculer \(\mathbf{P}(Z=i,|X-Y|=k)\), puis \(\mathbf{P}(|X-Y|=k)\).
[probas/ex1099] On lance deux dés. Soit \(X\) la valeur du premier dé et \(Y\) la somme des deux valeurs. Calculer la fonction génératrice des moments conjoints de \(X\) et \(Y\).
[probas/ex1099]
[probas/ex1741] Soit \((X,Y)\) un couple de variables aléatoires. Montrer que : \[[E(XY)]^2\leqslant E(X^2)\,E(Y^2).\] Cette inégalité est connue sous le nom d’inégalité de Cauchy-Schwarz.
[probas/ex1741]
[concours/ex4849] escp S 2002 On considère les lancers successifs (indépendants) d’une pièce non pipée et on note \(T\) le nombre de Face précédant le premier Pile. On propose à un joueur la suite de paris suivante :
[concours/ex4849]
Pari \(P_0\): si \(T=0\), on perd \(1\) Euro; si \(T=1\), on gagne \(3\) Euros; sinon on ne gagne ni ne perd rien;
Pari \(P_1\): si \(T=1\), on perd \(4\) Euros; si \(T=2\), on gagne \(9\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_2\): si \(T=2\), on perd \(10\) Euros ; si \(T=3\), on gagne \(27\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_n\): si \(T=n\), on perd \(3^n+1\) Euros; si \(T=n+1\), on gagne \(3^{n+1}\) Euros; sinon, on ne gagne ni ne perd rien;
Chaque pari est-il favorable au joueur ?
Calculer l’espérance du gain \(\Gamma\) si le joueur parie sur la suite de tous les résultats.
[probas/ex2282] Vrai ou faux ?
[probas/ex2282]
Si \(X\) et \(Y\) sont deux variables aléatoires possédant une espérance, alors \(\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\) et \(\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\) possèdent également une espérance.
[oraux/ex4776] escp S 2012 Une urne contient \(n\) boules numérotées de \(1\) à \(n\) et \(k\) boules bleues non numérotées. Les boules sont tirées avec remise jusqu’à ce qu’une boule bleue soit tirée. Au cours de ces tirages, on définit le nombre \(R\) de répétitions de la manière suivante :
[oraux/ex4776]
au début, \(R =0\). Ensuite, on ajoute \(1\) à \(R\) dès que l’on obtient une boule numérotée qui avait été déjà tirée précédemment.
Déterminer les probabilités des événements suivants :
\(A_1=\) « la première boule tirée est la boule numéro \(1\) ».
\(A_2=\) « la première boule tirée est une boule portant un numéro strictement supérieur à \(1\) ».
\(A_3=\) « la première boule tirée est une boule bleue ».
On note \(A_0\) l’événement « la boule numéro \(1\) n’est jamais tirée lors du jeu ». En utilisant la formule des probabilités totales avec les événements précédents, montrer que \(P(A_0) = \displaystyle{k\over k+1}\).
On note \(X\) le nombre de fois où l’on a tiré la boule \(1\) au cours du jeu. En utilisant un raisonnement analogue à celui de la question précédente, montrer que \(E(X) = \displaystyle{1\over k}\).
On définit la variable aléatoire \(Y\) par : \[\cases{\hbox{Si $X\geqslant 1$, alors $Y=X-1$}\cr \hbox{Si $X=0$, alors $Y=0$}\cr}\] (\(Y\) est donc le nombre de répétitions de la boule numérotée \(1\).)
Montrer que \(E(Y) =\sum\limits_{m\geqslant 1} (m-1) P(X = m)\) puis que \(E(Y) = \displaystyle{1\over k(k+1)}\).
Soit \(r\) un entier naturel. On recherche la valeur minimale de \(k\) (en fonction de \(n\) et \(r\)) de manière à ce que le nombre moyen \(t\) de répétitions soit inférieur ou égal à \(r\).
Montrer que \(t = n E(Y)\).
En déduire que la valeur minimale recherchée est \(k_0 = \left\lfloor{\sqrt{\displaystyle{n\over r} + {1\over4}} - \displaystyle{1\over2}}\right\rfloor\).
[planches/ex7419] ccinp PC 2021 Soient \(X\) et \(Y\) deux variables aléatoires définies sur un même espace probabilisé. On suppose que \(X\) suit la loi binomiale de paramètres \(n\) et \(p\) avec \(p\in\left]0,1\right[\) et que \(Y\) suit la loi uniforme sur \(\{0,1,\ldots,n\}\).
[planches/ex7419]
On définit la variable aléatoire \(Z\) par \(\forall\omega\in\Omega\), \(Z(\omega)=\cases{X(\omega)&si $X(\omega)\neq0$\cr Y(\omega)&si $X(\omega)=0$.}\)
Déterminer la loi de \(Z\) et son espérance.
[planches/ex1921] polytechnique, espci PC 2017 Une machine produit deux types de pièces : le type \(A\) avec probabilité \(a\), le type \(B\) avec probabilité \(b=1-a\). Chaque pièce est défectueuse avec une probabilité \(p\), indépendante du type, et indépendamment d’une pièce à l’autre. La machine s’arrête dès qu’elle a produit une pièce du type \(A\).
[planches/ex1921]
Soit \(X\) la variable aléatoire égale au nombre de pièces défectueuses au moment de l’arrêt de la machine. Déterminer \(\mathbf{E}(X)\) sans déterminer complètement la loi de \(X\). Commenter.
Déterminer la loi de \(X\) et retrouver le résultat précédent.
[probas/ex1414] Un couple de variables aléatoires discrètes a pour loi : \[\mathbf{P}(X=x,Y=y)=\displaystyle{2x+y\over42}\hbox{ pour }x\in[[0,2]]\hbox{ et }y\in[[0,3]],\quad0\hbox{ ailleurs.}\] Calculer l’espérance conditionnelle de \(Y\) sachant \(X=2\).
[probas/ex1414]
[planches/ex8840] centrale PC 2022 Deux joueurs jouent à tirer l’un après l’autre dans leur propre urne des boules avec remises. Dans l’urne du joueur 1, il y a une proportion \(p_1\) de boules rouges. Dans l’urne du joueur 2, il a une proportion \(p_2\) de boules rouges. La partie se joue en plusieurs manches : à la première manche, le joueur 1 tire une boule dans son urne et la remet, à la deuxième manche, le joueur 2 tire une boule dans son urne et la remet et ainsi de suite… Le jeu s’arrête lorsqu’un joueur a tiré une boule rouge.
[planches/ex8840]
Montrer que le jeu s’arrête presque sûrement.
Proposer des proportions \(p_1\) et \(p_2\) de sorte que les joueurs aient autant de chance de gagner chacun.
Donner l’espérance du nombre de manches jouées.
[probas/ex2052] Une pièce équilibrée est lancée trois fois. On note \(X\) la variable qui vaut 0 ou 1 suivant que face ou pile apparaisse au premier lancer, et \(Y\) est le nombre total de faces qui apparaissent. Soit \(Z=X+Y\).
[probas/ex2052]
Donner la loi de \(Z\).
Calculer \(\mathbf{E}(Z)\), et vérifier que \(\mathbf{E}(Z)=\mathbf{E}(X)+\mathbf{E}(Y)\).
Calculer \(\mathbf{V}(X)\), \(\mathbf{V}(Y)\) et \(\mathbf{V}(Z)\), et comparer \(\mathbf{V}(Z)\) à \(\mathbf{V}(X)+\mathbf{V}(Y)\).
[concours/ex4746] escp S 2003
[concours/ex4746]
Pour \(m\geqslant 1\), on considère une série statistique \((M_i)_{1\leqslant i\leqslant m}\) à deux variables. La première variable est notée \(Z\), la seconde \(T\) et on écrit \(M_i(z_i,t_i)\) pour tout \(i\) de \(\{1,\ldots,m\}\).
Pour les applications numériques on prend \(\overline{Z}=\overline{T}=10\), \(V(Z)=V(T)=9\) et \({\rm cov}(Z,T)=4\) et on pose \(A=\left(\begin{array}{cc}9&4\\ 4&9\end{array}\right)\).
On identifie les éléments de \(\mathbf{R}^2\) et de \({\cal M}_{2,1}(\mathbf{R})\).
Diagonaliser \(A\) dans une base orthonormale \((e_1,e_2)\) de \(\mathbf{R}^2\) pour le produit scalaire usuel.
Déterminer une matrice \(P\) de \({\cal M}_2(\mathbf{R})\) telle que \(P^{-1}={}^tP\) et \(^tPAP\) soit diagonale.
Pour tout \((x,y)\) de \(\mathbf{R}^2\) on pose \(f(x,y)= \left(\begin{array}{cc}x&y\end{array}\right)\times A\times \left(\begin{array}{c}x\\ y\end{array}\right)\).
Montrer que l’application \((x,y)\mapsto \displaystyle{f(x,y)\over x^2+y^2}\) admet un minimum et un maximum sur \(E=\mathbf{R}^2\setminus\{(0,0)\}\), extremums que l’on déterminera (on pourra travailler dans la base \((e_1,e_2)\)).
En déduire les \((\alpha,\beta)\) de \(\mathbf{R}^2\) tels que \(\alpha^2+\beta^2=1\) qui donnent une série statistique \(\alpha\,Z+\beta\,T\) de variance maximale ; même question pour \(\alpha Z+\beta T\) de variance minimale. Déterminer les extremums.
Si l’on appelle \(u_1=(\alpha_1,\beta_1)\) un couple qui donne une série statistique de variance minimale, déterminer une équation de la droite passant par le point moyen de la série et dirigée par ce vecteur.
Montrer que cette droite est celle qui réalise le minimum de la somme des carrés des distances des points \(M_i\) à une droite \(\Delta\) passant par le point moyen \(\Omega(\overline Z,\overline T)\), d’équation \(\alpha\,x+\beta\,y+c=0\) dans le plan \(\mathbf{R}^2\) muni de sa structure euclidienne canonique (on pourra utiliser la formule \(d(M_i,\Delta)=\displaystyle{|\alpha\,z_i+\beta\,t_i+c|\over\sqrt{\alpha^2+\beta^2}}\) qui donne la distance d’un point \(M_i\) à la droite \(\Delta\) d’équation \(\alpha\,x+\beta\,y+c=0\)).
Qu’en est-il si l’on n’impose plus à la droite de passer par \(\Omega\) ?
Déterminer les \((\alpha,\beta)\) tels que \(\alpha\geqslant 0\), \(\beta\geqslant 0\) et \(\alpha+\beta=1\) pour lesquels la série statistique \(\alpha Z+\beta T\) admet une variance maximale que l’on déterminera ; même question pour \(\alpha Z+\beta T\) de variance minimale.
[planches/ex8260] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes de même loi géométrique de paramètre \(p\).
[planches/ex8260]
Déterminer la loi de la variable \(T=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\) ; préciser son espérance et sa fonction génératrice.
Montrer que la variable \(\displaystyle{1\over T(T+1)}\) admet une espérance finie puis la calculer.
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'un concours particulier