[concours/ex4849] escp S 2002 On considère les lancers successifs (indépendants) d’une pièce non pipée et on note \(T\) le nombre de Face précédant le premier Pile. On propose à un joueur la suite de paris suivante :
[concours/ex4849]
Pari \(P_0\): si \(T=0\), on perd \(1\) Euro; si \(T=1\), on gagne \(3\) Euros; sinon on ne gagne ni ne perd rien;
Pari \(P_1\): si \(T=1\), on perd \(4\) Euros; si \(T=2\), on gagne \(9\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_2\): si \(T=2\), on perd \(10\) Euros ; si \(T=3\), on gagne \(27\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_n\): si \(T=n\), on perd \(3^n+1\) Euros; si \(T=n+1\), on gagne \(3^{n+1}\) Euros; sinon, on ne gagne ni ne perd rien;
Chaque pari est-il favorable au joueur ?
Calculer l’espérance du gain \(\Gamma\) si le joueur parie sur la suite de tous les résultats.
[concours/ex5019] escp S 2000 Si \(X\) est un ensemble, on note \({\cal P}(X)\) l’ensemble des parties de \(X\) et pour tout entier naturel \(k\), \({\cal P}_k(X)\) désigne l’ensemble des parties de \(X\) à \(k\) éléments.
[concours/ex5019]
Dans tout l’exercice, \(n\) est un entier naturel non nul et \(E_n\) désigne l’ensemble \(\{1,2,\ldots ,n\}\).
Soient \(a\) et \(b\) deux entiers tels que \(1\leqslant a\leqslant n\) et \(1\leqslant b\leqslant n\). On tire au hasard une partie \(A\) dans \({\cal P}_a(E_n)\) et une partie \(B\) dans \({\cal P}_b(E_n)\). On note \(X\) la variable aléatoire égale au nombre d’éléments de \(A\cap B\) et \(Y\) la variable aléatoire égale au nombre d’éléments de \(A\cup B\).
Dans le cas particulier où \(n=7\), \(a=4\), \(b=2\), déterminer la loi de \(X\).
Dans le cas général, calculer l’espérance des variables \(X\) et \(Y\).
Sous la contrainte \(a+b=n\), quels sont les couples \((a,b)\) pour lesquels l’espérance de \(X\) est maximale ?
On tire au hasard une partie \(C\) dans \({\cal P}(E_n)\), puis on tire au hasard une partie \(D\) dans \({\cal P}(C)\). On note \(Z\) la variable aléatoire égale au cardinal de \(D\).
Déterminer la loi de \(Z\) et son espérance.
[probas/ex2091] Deux cartes sont tirées au hasard d’un jeu en contenant 5, numérotées 1, 1, 2, 2 et 3. Soit \(X\) la somme et \(Y\) le maximum des deux nombres obtenus. Calculer la loi, l’espérance, la variance et l’écart-type de \(X\), \(Y\), \(Z=X+Y\), \(W=XY\).
[probas/ex2091]
[planches/ex8266] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes et de même loi uniforme sur \([[1,n]]\). Soit \(m\in[[1,n]]\). Soit \(Z\) telle que \(Z=X\) si \(Y\leqslant m\), et \(Z=Y\) sinon.
[planches/ex8266]
Déterminer la loi de \(Z\).
Calculer les espérances de \(X\), \(Y\) et \(Z\).
Pour quels entiers \(m\in[[1,n]]\) l’espérance \(\mathbf{E}(Z)\) est-elle maximale ?
[probas/ex0169] hec 1995 On considère un entier naturel \(n\) non nul, un réel \(p\) de \(\left]0,1\right[\) ; \(X\) est une variable aléatoire avec \(X\hookrightarrow\mathscr{B}(n,p)\).
[probas/ex0169]
Les valeurs prises par \(X\) sont affichées par un compteur défaillant ; lorsqu’il doit afficher 0, il affiche en fait au hasard un nombre compris entre 1 et \(n\) ; sinon il affiche le bon résultat.
Soit \(Y\) la variable aléatoire correspondant au numéro affiché par le compteur. Donner la loi de \(Y\) et \(E(Y)\).
[probas/ex0019] Soient \(X\) et \(Y\) deux V.A.R. discrètes telles que : \[\left\{\begin{array}{l} E(X)=E(Y)=m\ (m\neq0),\\V(X)=\sigma_1^2,\ V(Y)=\sigma_2^2,\\ \mathop{\mathchoice{\hbox{cov}}{\hbox{cov}}{\mathrm{cov}}{\mathrm{cov}}}\nolimits(X,Y)=\mu,\ V(X-Y)\neq0.\end{array}\right.\] Soit \(Z=aX+bY\). Déterminer \(a\) et \(b\) pour que \(E(Z)=m\) et que \(V(Z)\) soit minimale.
[probas/ex0019]
[concours/ex4746] escp S 2003
[concours/ex4746]
Pour \(m\geqslant 1\), on considère une série statistique \((M_i)_{1\leqslant i\leqslant m}\) à deux variables. La première variable est notée \(Z\), la seconde \(T\) et on écrit \(M_i(z_i,t_i)\) pour tout \(i\) de \(\{1,\ldots,m\}\).
Pour les applications numériques on prend \(\overline{Z}=\overline{T}=10\), \(V(Z)=V(T)=9\) et \({\rm cov}(Z,T)=4\) et on pose \(A=\left(\begin{array}{cc}9&4\\ 4&9\end{array}\right)\).
On identifie les éléments de \(\mathbf{R}^2\) et de \({\cal M}_{2,1}(\mathbf{R})\).
Diagonaliser \(A\) dans une base orthonormale \((e_1,e_2)\) de \(\mathbf{R}^2\) pour le produit scalaire usuel.
Déterminer une matrice \(P\) de \({\cal M}_2(\mathbf{R})\) telle que \(P^{-1}={}^tP\) et \(^tPAP\) soit diagonale.
Pour tout \((x,y)\) de \(\mathbf{R}^2\) on pose \(f(x,y)= \left(\begin{array}{cc}x&y\end{array}\right)\times A\times \left(\begin{array}{c}x\\ y\end{array}\right)\).
Montrer que l’application \((x,y)\mapsto \displaystyle{f(x,y)\over x^2+y^2}\) admet un minimum et un maximum sur \(E=\mathbf{R}^2\setminus\{(0,0)\}\), extremums que l’on déterminera (on pourra travailler dans la base \((e_1,e_2)\)).
En déduire les \((\alpha,\beta)\) de \(\mathbf{R}^2\) tels que \(\alpha^2+\beta^2=1\) qui donnent une série statistique \(\alpha\,Z+\beta\,T\) de variance maximale ; même question pour \(\alpha Z+\beta T\) de variance minimale. Déterminer les extremums.
Si l’on appelle \(u_1=(\alpha_1,\beta_1)\) un couple qui donne une série statistique de variance minimale, déterminer une équation de la droite passant par le point moyen de la série et dirigée par ce vecteur.
Montrer que cette droite est celle qui réalise le minimum de la somme des carrés des distances des points \(M_i\) à une droite \(\Delta\) passant par le point moyen \(\Omega(\overline Z,\overline T)\), d’équation \(\alpha\,x+\beta\,y+c=0\) dans le plan \(\mathbf{R}^2\) muni de sa structure euclidienne canonique (on pourra utiliser la formule \(d(M_i,\Delta)=\displaystyle{|\alpha\,z_i+\beta\,t_i+c|\over\sqrt{\alpha^2+\beta^2}}\) qui donne la distance d’un point \(M_i\) à la droite \(\Delta\) d’équation \(\alpha\,x+\beta\,y+c=0\)).
Qu’en est-il si l’on n’impose plus à la droite de passer par \(\Omega\) ?
Déterminer les \((\alpha,\beta)\) tels que \(\alpha\geqslant 0\), \(\beta\geqslant 0\) et \(\alpha+\beta=1\) pour lesquels la série statistique \(\alpha Z+\beta T\) admet une variance maximale que l’on déterminera ; même question pour \(\alpha Z+\beta T\) de variance minimale.
[probas/ex2300] Vrai ou faux ?
[probas/ex2300]
Si \(X\) et \(Y\) sont deux variables possédant une variance et si \(X\leqslant Y\), alors on a : \(\mathbf{V}(X)\leqslant\mathbf{V}(Y)\).
[planches/ex6357] hec E 2021 Le jeu de mémory est composé de \(n\) (\(n\) étant un entier naturel non nul) paires d’images deux à deux distinctes, sur une seule des \(n\) paires sont représentés des chatons. Ces images sont réparties en deux tas : chaque paire aura une de ses images dans chaque tas. Les images sont posées face cachée. À chaque étape, une carte de chaque tas est retournée. Si les deux cartes retournées forment la paire de chatons, alors le jeu s’arrête, sinon les cartes sont retournées et les tas à nouveau mélangés.
[planches/ex6357]
Deux joueurs \(A\) et \(B\) jouent en parallèle. Ils possèdent chacun leur propre jeu de mémory et jouent indépendamment, mais réalisent leurs étapes en même temps. On note \(X\) (respectivement \(Y\)) le nombre d’étapes de jeu effectuées par le joueur \(A\) (respectivement \(B\)) lorsqu’il trouve la paire de chatons. On note de plus : \(M = \mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\). On admet que \(M\) est une variable aléatoire.
Question de cours : Énoncer la définition de l’espérance d’une variable aléatoire discrète.
Donner la loi de \(X\), son espérance et sa variance.
Pour tout entier naturel \(k\), déterminer \(\mathbf{P}\big( {M \leqslant k} \big)\).
Montrer que la série \(\displaystyle\sum\limits_{k \geqslant 0} \mathbf{P}\big( {M > k} \big)\) converge.
Montrer que pour tout entier naturel \(K\) non nul : \[\displaystyle\sum\limits_{k=1}^{K} k \, \mathbf{P}\big( {M = k} \big) \ = \ -K \, \mathbf{P}\big( {M > K} \big) + \displaystyle\sum\limits_{k=0}^{K-1} \mathbf{P}\big( {M > K} \big)\]
En déduire que \(M\) admet une espérance.
Montrer que la suite \(\Big(K \, \mathbf{P}\big( {M>K} \big) \Big)_{K \geqslant 0}\) converge vers \(0\).
Déterminer \(\mathbf{E}(M)\).
[probas/ex0008] Dans un casino, un croupier mélange trois cartes : As de cœur, Roi de cœur, Valet de pique et les présente face cachée sur une table. Un joueur choisit l’une de ces trois cartes au hasard. Si c’est un cœur, il gagne 1€ si c’est l’As, 2€ si c’est le Roi et le jeu recommence. Si c’est le Valet de pique, le jeu s’arrête.
[probas/ex0008]
On note \(N\) le nombre de cartes tirées avant l’apparition du Valet de pique et \(S\) la somme gagnée (en €).
Déterminer la loi de \(N\). Quelle est la probabilité que le Valet de pique ne soit jamais tiré ?
Déterminer la loi de \(S\) sachant \([N=n]\).
Quel prix minimum le casino soit-il faire payer une partie pour ne pas être perdant en moyenne ?
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF