[concours/ex5019] escp S 2000 Si \(X\) est un ensemble, on note \({\cal P}(X)\) l’ensemble des parties de \(X\) et pour tout entier naturel \(k\), \({\cal P}_k(X)\) désigne l’ensemble des parties de \(X\) à \(k\) éléments.
[concours/ex5019]
Dans tout l’exercice, \(n\) est un entier naturel non nul et \(E_n\) désigne l’ensemble \(\{1,2,\ldots ,n\}\).
Soient \(a\) et \(b\) deux entiers tels que \(1\leqslant a\leqslant n\) et \(1\leqslant b\leqslant n\). On tire au hasard une partie \(A\) dans \({\cal P}_a(E_n)\) et une partie \(B\) dans \({\cal P}_b(E_n)\). On note \(X\) la variable aléatoire égale au nombre d’éléments de \(A\cap B\) et \(Y\) la variable aléatoire égale au nombre d’éléments de \(A\cup B\).
Dans le cas particulier où \(n=7\), \(a=4\), \(b=2\), déterminer la loi de \(X\).
Dans le cas général, calculer l’espérance des variables \(X\) et \(Y\).
Sous la contrainte \(a+b=n\), quels sont les couples \((a,b)\) pour lesquels l’espérance de \(X\) est maximale ?
On tire au hasard une partie \(C\) dans \({\cal P}(E_n)\), puis on tire au hasard une partie \(D\) dans \({\cal P}(C)\). On note \(Z\) la variable aléatoire égale au cardinal de \(D\).
Déterminer la loi de \(Z\) et son espérance.
[probas/ex1081] Un prisonnier est enfermé dans une cellule contenant 3 portes. La première ouvre un tunnel qui revient dans la cellule après une marche de 2 jours. La seconde porte donne sur un tunnel qui revient aussi à la cellule au bout d’un voyage de 4 jours. La troisième porte conduit à la liberté au bout d’un jour de marche. On suppose que le prisonnier choisit à chaque tentative les portes 1, 2, et 3 avec des probabilités \(0.5\), \(0.3\) et \(0.2\). Quelle est l’espérance du nombre de jours qu’il faudra au prisonnier pour retrouver sa liberté ?
[probas/ex1081]
[planches/ex4055] ccp MP 2018 Soient \(n\in\mathbf{N}\), \(X\) et \(Y\) deux variables aléatoires à valeurs dans \(\{1,\ldots,n+1\}\) telles que, pour tout \((i,j)\in\{1,\ldots,n+1\}^2\), \(\mathbf{P}(X=i,Y=j)=a_{i,j}=\lambda\displaystyle{n\choose i-1}{n\choose j-1}\), où \(\lambda\in\mathbf{R}_+^*\).
[planches/ex4055]
Montrer que \(\lambda=\displaystyle{1\over4^n}\).
Déterminer les lois de \(X\) et de \(Y\).
Les variables \(X\) et \(Y\) sont-elles indépendantes ?
Trouver à l’aide de la variable aléatoire \(X-1\) l’espérance et la variance de \(X\).
On note \(B=(b_{i,j})_{(i,j)\in[[1,n+1]]^2}\in\mathscr{M}_{n+1}(\mathbf{R})\) avec \(b_{i,j}=\mathbf{P}(Y=i|X=j)\).
Calculer \(B^2\) .
Déterminer les valeurs propres de \(B\). La matrice \(B\) est-elle diagonalisable ? Déterminer la dimension des sous-espaces propres associés.
[examen/ex0901] escp courts S 2021 Soit \(X\), \(Y\) deux variables aléatoires indépendantes suivant une loi uniforme sur \([[1,n]]\), soit \(g\) une bijection de \([[1,n]]\) sur lui-même.
[examen/ex0901]
On pose \(T=g(X)\) et \(Z=\mathbf1_{[Y\leqslant g(X)]}\).
Quelle est la loi de \(T\) ? Montrer que \(n\mathbf{E}(Z)=\mathbf{E}(T)\).
Que dire de leurs variances ?
[concours/ex5183] escp S 2007 On dispose d’une pièce de monnaie donnant « pile » avec la probabilité \(p\) et « face » avec la probabilité \(q=1-p\) (avec \(p\in\left]0,1\right[\)).
[concours/ex5183]
On lance cette pièce, les lancers étant indépendants les uns des autres, et on note \(N\) le nombre aléatoire de lancers nécessaires à la première apparition de « pile » (on pose \(N=-1\) si « pile » n’apparaît jamais).
Quand « pile » apparaît au bout de \(n\) lancers, on effectue une série de \(n\) lancers avec cette même pièce et on note \(X\) le nombre de « pile » obtenus au cours de cette série.
Quelle est la loi de \(N\) ?
Déterminer la loi du couple \((N,X)\).
Calculer \(P(X=0)\) et \(P(X=1)\).
Pour tout entier naturel \(k\) non nul, exprimer \(P(X=k)\) sous forme d’une série.
Calculer la somme de cette série.
On rappelle que si \(|x|<1\) alors \(\displaystyle \sum\limits\limits_{k=r}^{+\infty}{k\choose r}x^{k-r}=\displaystyle{1\over(1-x)^{r+1}}\)
Déterminer l’espérance de \(X\) par deux méthodes : une première fois par calcul direct, une deuxième en utilisant la formule de l’espérance totale. Pourquoi ce résultat est-il raisonnable ?
[concours/ex4643] escp S 2004
[concours/ex4643]
Soient \(X\) une variable aléatoire finie ou discrète qui possède une espérance et \(Y\) une variable aléatoire à valeurs dans \(\left\{ 1,\ldots,p\right\}\). On suppose que \(P\left( Y=i\right) >0\) pour tout \(i\in \left\{ 1,\ldots ,p\right\}\).
Soit \(i\in \left\{ 1,\ldots ,p\right\}\). Montrer que la loi conditionnelle de \(X\), conditionnée par l’événement \((Y=i)\) admet une espérance qu’on notera \(E(X/Y=i)\).
Prouver la formule suivante : \(E(X)=\sum\limits\limits_{i=1}^{p}E(X/ Y=i)P\left( Y=i\right)\).
Soit \(n\) un entier non nul. Montrer que l’on a : \(\sum\limits\limits_{k=1}^{n}k^{2}=\displaystyle{n(n+1)(2n+1)\over6}\).
Un technicien assure la maintenance de \(n\) machines-outils de même type qui sont alignées. Deux machines consécutives sont distantes d’une longueur \(\ell\). De temps en temps les machines outils s’arrêtent avec la même probabilité et indépendamment les unes des autres et nécessitent un réglage. Après le réglage d’une machine-outil le technicien reste devant celle-ci, jusqu’à ce qu’une autre machine-outil s’arrête (si c’est la même machine qui retombe en panne, il reste à sa place). La variable aléatoire \(X\) est la distance que parcourt le technicien entre deux réglages. On note \(Y\) la variable aléatoire qui prend pour valeur le numéro de la machine devant laquelle se trouve le technicien.
Calculer l’espérance de \(X\).
Déterminer la variance de \(X\).
[oraux/ex8395] ensam PSI 2015 Soit \(Z\) une variable aléatoire à valeurs dans \(\mathbf{Z}\), et pour \(t\in\mathbf{R}\), \(H_Z(t)=\mathbf{P}(Z\geqslant t)\).
[oraux/ex8395]
Montrer que \(H_Z(k-1)-H_Z(k)=\mathbf{P}(Z=k-1)\).
Tracer \(H_Z\) pour \(\mathbf{P}(Z=0)=1/6\), \(\mathbf{P}(Z=1)=1/3\) et \(\mathbf{P}(Z=3)=1/2\).
Si \(q\) est la valeur maximale de \(Z\), montrer par récurrence décroissante que : \[\sum\limits_{k=n}^qH_Z(k)=\sum\limits_{j=n}^qj\mathbf{P}(X=j)-(n-1)H_Z(n).\]
Si \(X\) et \(Y\) sont à valeurs dans \(\mathbf{N}\), montrer que : \(H_X\geqslant H_Y\Longrightarrow\mathbf{E}(X)\geqslant\mathbf{E}(Y)\).
[examen/ex0894] escp courts S 2021 Dans une urne contenant \(n\) boules numérotées de 1 à \(n\), on pioche une boule ; si elle porte le numéro \(k\), on remet alors \(k\) boules de numéro \(k\) dans l’urne. On note \(X\), le numéro de la première boule, \(Y\) celui de la deuxième.
[examen/ex0894]
Donner la loi de \(X\), puis la loi de \(Y\), en fonction de \(H_n=\displaystyle\sum\limits_{m=n+1}^{2n}{1\over m}\).
Calculer l’espérance de \(Y\).
[probas/ex1741] Soit \((X,Y)\) un couple de variables aléatoires. Montrer que : \[[E(XY)]^2\leqslant E(X^2)\,E(Y^2).\] Cette inégalité est connue sous le nom d’inégalité de Cauchy-Schwarz.
[probas/ex1741]
[concours/ex4746] escp S 2003
[concours/ex4746]
Pour \(m\geqslant 1\), on considère une série statistique \((M_i)_{1\leqslant i\leqslant m}\) à deux variables. La première variable est notée \(Z\), la seconde \(T\) et on écrit \(M_i(z_i,t_i)\) pour tout \(i\) de \(\{1,\ldots,m\}\).
Pour les applications numériques on prend \(\overline{Z}=\overline{T}=10\), \(V(Z)=V(T)=9\) et \({\rm cov}(Z,T)=4\) et on pose \(A=\left(\begin{array}{cc}9&4\\ 4&9\end{array}\right)\).
On identifie les éléments de \(\mathbf{R}^2\) et de \({\cal M}_{2,1}(\mathbf{R})\).
Diagonaliser \(A\) dans une base orthonormale \((e_1,e_2)\) de \(\mathbf{R}^2\) pour le produit scalaire usuel.
Déterminer une matrice \(P\) de \({\cal M}_2(\mathbf{R})\) telle que \(P^{-1}={}^tP\) et \(^tPAP\) soit diagonale.
Pour tout \((x,y)\) de \(\mathbf{R}^2\) on pose \(f(x,y)= \left(\begin{array}{cc}x&y\end{array}\right)\times A\times \left(\begin{array}{c}x\\ y\end{array}\right)\).
Montrer que l’application \((x,y)\mapsto \displaystyle{f(x,y)\over x^2+y^2}\) admet un minimum et un maximum sur \(E=\mathbf{R}^2\setminus\{(0,0)\}\), extremums que l’on déterminera (on pourra travailler dans la base \((e_1,e_2)\)).
En déduire les \((\alpha,\beta)\) de \(\mathbf{R}^2\) tels que \(\alpha^2+\beta^2=1\) qui donnent une série statistique \(\alpha\,Z+\beta\,T\) de variance maximale ; même question pour \(\alpha Z+\beta T\) de variance minimale. Déterminer les extremums.
Si l’on appelle \(u_1=(\alpha_1,\beta_1)\) un couple qui donne une série statistique de variance minimale, déterminer une équation de la droite passant par le point moyen de la série et dirigée par ce vecteur.
Montrer que cette droite est celle qui réalise le minimum de la somme des carrés des distances des points \(M_i\) à une droite \(\Delta\) passant par le point moyen \(\Omega(\overline Z,\overline T)\), d’équation \(\alpha\,x+\beta\,y+c=0\) dans le plan \(\mathbf{R}^2\) muni de sa structure euclidienne canonique (on pourra utiliser la formule \(d(M_i,\Delta)=\displaystyle{|\alpha\,z_i+\beta\,t_i+c|\over\sqrt{\alpha^2+\beta^2}}\) qui donne la distance d’un point \(M_i\) à la droite \(\Delta\) d’équation \(\alpha\,x+\beta\,y+c=0\)).
Qu’en est-il si l’on n’impose plus à la droite de passer par \(\Omega\) ?
Déterminer les \((\alpha,\beta)\) tels que \(\alpha\geqslant 0\), \(\beta\geqslant 0\) et \(\alpha+\beta=1\) pour lesquels la série statistique \(\alpha Z+\beta T\) admet une variance maximale que l’on déterminera ; même question pour \(\alpha Z+\beta T\) de variance minimale.
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée