[probas/ex2320] Vrai ou faux ?
[probas/ex2320]
Soit \(X\) et \(Y\) deux variables aléatoires admettant une variance.
Alors \(\mathbf{V}(X-Y)=\mathbf{V}(X)-\mathbf{V}(Y)-2\mathop{\mathchoice{\hbox{cov}}{\hbox{cov}}{\mathrm{cov}}{\mathrm{cov}}}\nolimits(X,Y)\).
[probas/ex0019] Soient \(X\) et \(Y\) deux V.A.R. discrètes telles que : \[\left\{\begin{array}{l} E(X)=E(Y)=m\ (m\neq0),\\V(X)=\sigma_1^2,\ V(Y)=\sigma_2^2,\\ \mathop{\mathchoice{\hbox{cov}}{\hbox{cov}}{\mathrm{cov}}{\mathrm{cov}}}\nolimits(X,Y)=\mu,\ V(X-Y)\neq0.\end{array}\right.\] Soit \(Z=aX+bY\). Déterminer \(a\) et \(b\) pour que \(E(Z)=m\) et que \(V(Z)\) soit minimale.
[probas/ex0019]
[oraux/ex6003] hec courts S 2014 Soit \(\mathscr{E}\) un ensemble de variables aléatoires discrètes centrées définies sur un même espace probabilisé et admettant une variance.
[oraux/ex6003]
Justifier l’existence de \(V_0=\mathop{\mathchoice{\hbox{inf}}{\hbox{inf}}{\mathrm{inf}}{\mathrm{inf}}}\limits\{V(X),\ X\in\mathscr{E}\}\).
On suppose que pour tout \((X_1,X_2)\in\mathscr{E}^2\), on a \(\displaystyle{1\over2}(X_1+X_2)\in\mathscr{E}\).
Soit \((X_1,X_2)\in\mathscr{E}^2\) avec \(V(X_1)=V(X_2)=V_0\). Montrer que \(X_1=X_2\) presque sûrement.
[planches/ex8266] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes et de même loi uniforme sur \([[1,n]]\). Soit \(m\in[[1,n]]\). Soit \(Z\) telle que \(Z=X\) si \(Y\leqslant m\), et \(Z=Y\) sinon.
[planches/ex8266]
Déterminer la loi de \(Z\).
Calculer les espérances de \(X\), \(Y\) et \(Z\).
Pour quels entiers \(m\in[[1,n]]\) l’espérance \(\mathbf{E}(Z)\) est-elle maximale ?
[concours/ex4955] escp B/L 2001 On considère une entreprise de \(400\) salariés. La moyenne et l’écart-type du salaire mensuel de tout le personnel sont respectivement \(\overline{x} = 10000\) F et \(\sigma (x) = 2000\) F. Le salaire le plus bas est \(6000\) F et le salaire le plus élevé est \(30000\) F.
[concours/ex4955]
À la suite d’une grève, des négociations salariales s’ouvrent. à l’issue de celles-ci, le salaire de chaque salarié sera majoré en appliquant la formule générale suivante : \(y_i = a x_i + b\), où :
le nombre \(x_i\) représente le salaire du salarié \(i\) avant l’augmentation,
le nombre \(y_i\) représente le salaire du salarié \(i\) après l’augmentation,
les coefficients \(a\) et \(b\) sont à déterminer.
Trois propositions sont sur la table des négociations :
augmenter la masse salariale de \(5 \%\) tout en laissant inchangée la dispersion des salaires mesurée par l’écart-type.
augmenter la masse salariale de \(5 \%\) tout en laissant inchangée la dispersion relative des salaires mesurée par le coefficient de variation \(C V =\displaystyle{\hbox{écart-type} \over {\rm moyenne}}\).
réduire de \(2 \%\) la dispersion des salaires mesurée par l’écart-type tout en augmentant la masse salariale d’un montant tel qu’aucun salaire ne diminue.
Calculer la masse salariale et le coefficient de variation des salaires avant l’augmentation.
Pour chacune des trois propositions en présence :
Calculer les paramètres \(a\) et \(b\) à utiliser. (Pour \({\rm P}_3\) on prendra la plus petite valeur de \(b\) vérifiant toutes les conditions).
Calculer la moyenne du nouveau salaire mensuel.
Autour de la table de négociations, on trouve trois groupes : des représentants de la direction, des représentants des cadres et des représentants des salariés non cadres, chaque groupe ayant formulé une des trois propositions.
Calculer, en pourcentage, l’augmentation de la masse salariale correspondant à la proposition \({\rm P}_3\).
Donner l’allure de la représentation graphique, dans un même repère, du nouveau salaire \(y\) en fonction de l’ancien \(x\) pour chacune des propositions. On s’intéressera uniquement à la position relative de ces droites.
Identifier, en utilisant les résultats précédents, de quel groupe émane chacune des propositions.
[concours/ex4721] escp S 2003
[concours/ex4721]
Soit \(n\in \mathbf{N}^*\) et \(x\) un réel. Calculer \(\sum\limits\limits_{k=0}^n k \displaystyle{n\choose k}x^k\) en fonction de \(n\) et \(x\).
Un boulanger possède un ensemble de pochettes surprise. Lorsqu’on en achète une on peut :
soit gagner une montre avec une probabilité de \(m\),
soit gagner un euro avec une probabilité de \(e\),
soit ne rien gagner.
Un client achète \(n\) pochettes. On désigne par \(M\) la variable aléatoire égale au nombre de montres gagnées et \(E\) la variable aléatoire égale au nombre d’euros gagnés.
Déterminer la loi de \(M\).
Déterminer la loi conjointe du couple \((M,E)\).
On suppose que \(k\) pochettes ont rapporté quelque chose.
Soit \(T_k\) la variable aléatoire égale à la proportion de pochettes ayant rapporté une montre par rapport au nombre de pochettes ayant rapporté quelque chose.
Déterminer la loi de \(T_k\).
Calculer l’espérance \(E(T_k)\) en fonction de \(m\) et \(e\).
[oraux/ex8341] mines PSI 2015
[oraux/ex8341]
Soient \(X\) et \(Y\) deux variables aléatoires réelles telles que \(X^2\) et \(Y^2\) admettent une espérance. Montrer que \(XY\) admet une espérance.
Soient \(a\in[0,1]\) et \(X\) une variable aléatoire positive admettant une espérance. Montrer l’inégalité \((1-a)\mathbf{E}(X)\leqslant\mathbf{E}(X.\mathbf1_{X\geqslant a\mathbf{E}(X)})\).
[probas/ex2054] On effectue un tirage avec remise de deux nombres entre 1 et 5. Soit \(X=0\) si le premier nombre tiré est pair et \(X=1\) sinon ; et \(Y=1\) si le deuxième nombre est impair et \(Y=0\) sinon. On pose \(Z=X+Y\).
[probas/ex2054]
Donner la loi de \(Z\).
Calculer \(\mathbf{E}(Z)\), et vérifier que \(\mathbf{E}(Z)=\mathbf{E}(X)+\mathbf{E}(Y)\).
Calculer \(\mathbf{V}(X)\), \(\mathbf{V}(Y)\) et \(\mathbf{V}(Z)\), et comparer \(\mathbf{V}(Z)\) à \(\mathbf{V}(X)+\mathbf{V}(Y)\).
[concours/ex4916] escp S 2001 Soit \(n\) un entier naturel non nul. Une boîte contient \((2n+1)\) jetons bicolores (une face est blanche, l’autre est noire). Les jetons sont numérotés de \(1\) à \(2n+1\) sur leur face blanche, les faces noires ne portant pas de numéro.
[concours/ex4916]
On lance simultanément tous les jetons et on observe leurs faces supérieures.
Une et une seulement des deux couleurs apparaît un nombre impair de fois. Soit \(X\) la variable aléatoire associée à ce nombre.
Déterminer la loi de \(X\).
Calculer son espérance et sa variance.
Suite au lancer, on ramasse les jetons de la couleur apparaissant un nombre impair de fois et on note les numéros de leur face blanche. Soit \(Y\) la variable aléatoire représentant le plus petit de ces nombres.
Soit \(k\in[[0,n]]\), déterminer la loi conditionnelle de \(Y\), conditionnée par l’événement \((X=2k+1)\).
En déduire la loi de \(Y\). Calculer son espérance.
[probas/ex2316] Vrai ou faux ?
[probas/ex2316]
Soit \(X\) et \(Y\) deux variables aléatoires ayant même loi et admettant une variance. Alors \(\mathbf{E}(XY)=\mathbf{E}(X^2)\).
[planches/ex8840] centrale PC 2022 Deux joueurs jouent à tirer l’un après l’autre dans leur propre urne des boules avec remises. Dans l’urne du joueur 1, il y a une proportion \(p_1\) de boules rouges. Dans l’urne du joueur 2, il a une proportion \(p_2\) de boules rouges. La partie se joue en plusieurs manches : à la première manche, le joueur 1 tire une boule dans son urne et la remet, à la deuxième manche, le joueur 2 tire une boule dans son urne et la remet et ainsi de suite… Le jeu s’arrête lorsqu’un joueur a tiré une boule rouge.
[planches/ex8840]
Montrer que le jeu s’arrête presque sûrement.
Proposer des proportions \(p_1\) et \(p_2\) de sorte que les joueurs aient autant de chance de gagner chacun.
Donner l’espérance du nombre de manches jouées.
[planches/ex2857] escp courts S 2018 Soient \(n\) et \(m\) deux entiers tels que \(n\geqslant m\geqslant 1\), et \(p\in\left]0,1\right[\). On considère deux variables aléatoires \(X\) et \(Y\) définies sur le même espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\), indépendantes, telles que \(X\hookrightarrow\mathscr{B}(n,p)\) et \(Y\hookrightarrow\mathscr{B}(m,p)\).
[planches/ex2857]
On pose \(D=X-Y\). Donner la loi de \(D\) ; calculer son espérance et sa variance.
[probas/ex0326] Un sac contient 6 jetons numérotés de 1 à 6. On en tire successivement 3 sans remise. Soit \(X\) la variable aléatoire, qui à chaque tirage, associe le plus grand des numéros tirés, et \(Y\) celle qui associe le numéro intermédiaire.
[probas/ex0326]
Déterminer les lois de \(X\) et de \(Y\).
Calculer \(E(X)\) et \(E(Y)\).
Déterminer la loi du couple \((X,Y)\).
[probas/ex2091] Deux cartes sont tirées au hasard d’un jeu en contenant 5, numérotées 1, 1, 2, 2 et 3. Soit \(X\) la somme et \(Y\) le maximum des deux nombres obtenus. Calculer la loi, l’espérance, la variance et l’écart-type de \(X\), \(Y\), \(Z=X+Y\), \(W=XY\).
[probas/ex2091]
[probas/ex1078] Une urne contient 4 boules blanches et 6 boules noires. On en tire successivement deux échantillons aléatoires de taille 3 et 5 respectivement, ceci sans remise. Soient \(X\) et \(Y\) le nombre de boules blanches dans chacun de ces échantillons ; calculer \(E(X/Y=i)\) pour \(i=1\), 2, 3, 4.
[probas/ex1078]
[planches/ex6846] mines MP 2021 Soient \(n\in\mathbf{N}^*\), \((\Omega,\mathscr{T},\mathbf{P})\) un espace probabilité, \(X\) et \(Y\) deux variables aléatoires indépendantes définies sur \((\Omega,\mathscr{T},\mathbf{P})\) suivant la loi uniforme sur \(\{1,2,\ldots,n\}\), \(m\in\{1,\ldots,n\}\). Soit \(Z\) la variable aléatoire telle que \(Z(\omega)=X(\omega)\) si \(Y(\omega)\leqslant m\) et \(Z(\omega)=Y(\omega)\) sinon.
[planches/ex6846]
Déterminer la loi de \(Z\). Calculer \(\mathbf{E}(Z)\).
Déterminer les entiers \(m\) qui maximisent l’espérance de \(Z\).
[oraux/ex8696] ensam PSI 2016 Soient \(X_1\) et \(X_2\) deux variables aléatoires indépendantes suivant une loi géométrique de paramètre \(p\). On pose \(q=1-p\) et \(Y=|X_1-X_2|\).
[oraux/ex8696]
Calculer \(\mathbf{P}(Y=0)\). Soit \(n\in\mathbf{N}\). Montrer que \(\mathbf{P}(X_1-X_2=n)=\displaystyle{pq^n\over1+q}\). En déduire la loi de \(Y\).
Montrer que \(Y\) admet une espérance et la calculer.
Montrer que \(\mathbf{E}((X_1-X_2)^2)=2\mathbf{V}(X_1)\). En déduire que \(Y\) admet une variance et la calculer.
[planches/ex4250] escp B/L 2018 Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\).
[planches/ex4250]
Une urne contient exclusivement des boules rouges et noires indiscernables au toucher.
La proportion de boules rouges est \(p\in\left]0,1\right[\). On effectue des tirages successifs d’une boule avec remise.
On commence par effectuer des tirages de boules jusqu’à obtention d’une boule rouge ; on note \(N\) le nombre de tirages qui ont été nécessaires pour obtenir cette première boule rouge.
On effectue ensuite \(N\) tirages successifs et on s’intéresse à \(X\) qui représente le nombre de boules rouges obtenues lors de ces \(N\) tirages.
Quelle est la loi de de la variable aléatoire \(N\) ?
Pour un entier \(n\geqslant 1\), quelle est la loi conditionnelle de \(X\) sachant \([N=n]\) ?
Déterminer la loi du couple \((N,X)\).
Déterminer la loi de \(X\). On pourra utiliser sans démonstration l’égalité : \[(*)\quad\forall k\in\mathbf{N},\quad\forall x\in\left]-1,1\right[,\quad{1\over(1-x)^{k+1}}=\sum\limits_{m=0}^{+ \infty}{m+k\choose k}x^m.\]
Soit un réel \(\lambda\in\left]0,1\right[\). On considère deux variables aléatoires \(U\) et \(V\) indépendantes, telles que \(U\) suit une loi de Bernouilli de paramètre \(\lambda\) et \(V\) suit une loi géométrique de paramètre \(\lambda\).
Déterminer la loi de la variable aléatoire \(UV\).
En déduire que \(X\) a même loi qu’un produit de deux variables aléatoires indépendantes, l’une suivant une loi de Bernoulli et l’autre une loi géométrique.
Exprimer \(\mathbf{E}(X)\) et \(\mathbf{V}(X)\) en fonction de \(\lambda\).
[probas/ex1470] La loi conjointe de deux variables aléatoires \(X\) et \(Y\) est donnée par le tableau : \[\begin{array}{|c|c|c|c|} \hline X\setminus Y&0&1&2\\\hline 0&1/18&1/9&1/6\\\hline 1&1/9&1/18&1/9\\\hline 2&1/6&1/6&1/18\\\hline\end{array}\] Calculer la variance conditionnelle de \(Y\) sachant \(X\), puis de \(X\) sachant \(Y\).
[probas/ex1470]
[oraux/ex4776] escp S 2012 Une urne contient \(n\) boules numérotées de \(1\) à \(n\) et \(k\) boules bleues non numérotées. Les boules sont tirées avec remise jusqu’à ce qu’une boule bleue soit tirée. Au cours de ces tirages, on définit le nombre \(R\) de répétitions de la manière suivante :
[oraux/ex4776]
au début, \(R =0\). Ensuite, on ajoute \(1\) à \(R\) dès que l’on obtient une boule numérotée qui avait été déjà tirée précédemment.
Déterminer les probabilités des événements suivants :
\(A_1=\) « la première boule tirée est la boule numéro \(1\) ».
\(A_2=\) « la première boule tirée est une boule portant un numéro strictement supérieur à \(1\) ».
\(A_3=\) « la première boule tirée est une boule bleue ».
On note \(A_0\) l’événement « la boule numéro \(1\) n’est jamais tirée lors du jeu ». En utilisant la formule des probabilités totales avec les événements précédents, montrer que \(P(A_0) = \displaystyle{k\over k+1}\).
On note \(X\) le nombre de fois où l’on a tiré la boule \(1\) au cours du jeu. En utilisant un raisonnement analogue à celui de la question précédente, montrer que \(E(X) = \displaystyle{1\over k}\).
On définit la variable aléatoire \(Y\) par : \[\cases{\hbox{Si $X\geqslant 1$, alors $Y=X-1$}\cr \hbox{Si $X=0$, alors $Y=0$}\cr}\] (\(Y\) est donc le nombre de répétitions de la boule numérotée \(1\).)
Montrer que \(E(Y) =\sum\limits_{m\geqslant 1} (m-1) P(X = m)\) puis que \(E(Y) = \displaystyle{1\over k(k+1)}\).
Soit \(r\) un entier naturel. On recherche la valeur minimale de \(k\) (en fonction de \(n\) et \(r\)) de manière à ce que le nombre moyen \(t\) de répétitions soit inférieur ou égal à \(r\).
Montrer que \(t = n E(Y)\).
En déduire que la valeur minimale recherchée est \(k_0 = \left\lfloor{\sqrt{\displaystyle{n\over r} + {1\over4}} - \displaystyle{1\over2}}\right\rfloor\).
[probas/ex2282] Vrai ou faux ?
[probas/ex2282]
Si \(X\) et \(Y\) sont deux variables aléatoires possédant une espérance, alors \(\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\) et \(\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\) possèdent également une espérance.
[concours/ex5134] escp B/L 1999 Une urne contient trois jetons numérotés 1, 2, 3 indiscernables au toucher. On effectue une suite de tirages d’un jeton de cette urne, en replaçant à chaque fois le jeton obtenu, avant le tirage suivant.
[concours/ex5134]
On note \(Y\) le nombre aléatoire de tirages juste nécessaire pour obtenir, pour la première fois, deux numéros différents. Déterminer la loi de \(Y\) et son espérance.
On note \(Z\) le nombre aléatoire de tirages juste nécessaire pour obtenir, pour la première fois, les trois numéros.
Déterminer la loi du couple \((Z,Y)\).
Déterminer la loi de \(Z\) et calculer son espérance.
[concours/ex6693] escp S 2008 Un vendeur de cycles vend des pédales de bicyclette qu’il se procure chez son grossiste par boîtes de deux ; toutes les boîtes sont supposées identiques et dans chaque boîte il y a une pédale droite et une pédale gauche.
[concours/ex6693]
Lorsqu’un client demande le remplacement de ses deux pédales de vélo, le commerçant lui vend une boîte complète et lui fait payer la somme de \(2r\) euros.
Lorsqu’un client demande le remplacement d’une seule des deux pédales, le commerçant décide de ne pas obliger le client à acheter une boîte complète, mais majore le prix de la pédale dans une proportion \(\alpha\), c’est-à-dire lui fait payer la somme de \((1 + \alpha)r\) euros.
Pour la simplicité de l’étude, on suppose que l’on sait que le nombre de pédales à poser séparément pendant la durée de l’étude vaut \(2n\), où \(n\) est un entier naturel non nul. On suppose que le vendeur ne dispose au départ que de boîtes complètes et en nombre suffisant.
Soit \(p\) la probabilité qu’une demande d’un client qui ne demande qu’une pédale corresponde à une pédale droite (\(p\) n’est pas nécessairement égal à \(1/2\)) et \(X\) le nombre de boîtes nécessaires à la satisfaction de ces \(2n\) demandes. (le commerçant n’ouvre une boîte que s’il ne dispose pas d’une boîte entamée lui permettant d’accéder à la demande du client)
Quelle est la loi de \(X\) ? On précisera l’ensemble des valeurs prises par \(X\).
Montrer que \(X\) peut s’écrire : \(X=a+\left|Y-b\right|\), où \(a\) et \(b\) sont des constantes qu’on précisera et \(Y\) une variable aléatoire qui suit une loi binomiale.
Donner l’expression l’espérance de \(E(X)\) en fonction de \(n\) et \(p\).
Dans la suite, on prendra la valeur \(p=1/2\).
Quelle majoration \(\alpha\) le marchand de cycles doit-il appliquer au prix de chaque pédale vendue séparément pour qu’en moyenne le prix de vente des \(2n\) pédales vendues séparément soit égal au prix de vente des \(X\) boîtes nécessaires vendues \(2r\) euros chacune.
La valeur \(\alpha\) trouvée dépend de \(n\) et on la note dorénavant \(\alpha_n\). Prouver que la suite \((\alpha_n)\) est décroissante. Donner un équivalent simple de \(\alpha_n\) et la limite de \(\alpha_n\) lorsque \(n\) tend vers \(+\infty\).
\([[\)On admettra la formule de Stirling : \(n\,!\sim\sqrt{2\pi n}\big(\displaystyle{n\over e}\big)^{n}\) \(]]\)
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF