[concours/ex4638] escp S 2004
[concours/ex4638]
Compléter les lignes de programme suivantes pour en faire un programme complet :
randomize; N:=random(m)+1;X:=0; For i:=1 to N Do X:=X+random(2); Writeln(N,’ ’,X);
randomize;
N:=random(m)+1;X:=0;
For i:=1 to N Do X:=X+random(2);
Writeln(N,’ ’,X);
(on rappelle que lorsque \(a\) est un integer, random(a) renvoie une valeur integer au hasard comprise entre 0 et \(a-1\), et que la procédure randomize permet d’initialiser la fonction random.)
integer
random(a)
randomize
random
On suppose que la première valeur affichée est \(4\). Quelles sont les valeurs possibles pour la seconde valeur affichée ?
On suppose que le programme précédent simule une expérience aléatoire. Quelle est alors la loi suivie par la variable aléatoire simulée par \(N\), son espérance, sa variance ?
Préciser \(X(\Omega)\) et calculer, pour tout couple \((i,k)\), \(P(X=i/N=k)\). En déduire la loi de \(X\).
Déterminer l’espérance de \(X\).
[planches/ex2857] escp courts S 2018 Soient \(n\) et \(m\) deux entiers tels que \(n\geqslant m\geqslant 1\), et \(p\in\left]0,1\right[\). On considère deux variables aléatoires \(X\) et \(Y\) définies sur le même espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\), indépendantes, telles que \(X\hookrightarrow\mathscr{B}(n,p)\) et \(Y\hookrightarrow\mathscr{B}(m,p)\).
[planches/ex2857]
On pose \(D=X-Y\). Donner la loi de \(D\) ; calculer son espérance et sa variance.
[planches/ex8266] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes et de même loi uniforme sur \([[1,n]]\). Soit \(m\in[[1,n]]\). Soit \(Z\) telle que \(Z=X\) si \(Y\leqslant m\), et \(Z=Y\) sinon.
[planches/ex8266]
Déterminer la loi de \(Z\).
Calculer les espérances de \(X\), \(Y\) et \(Z\).
Pour quels entiers \(m\in[[1,n]]\) l’espérance \(\mathbf{E}(Z)\) est-elle maximale ?
[planches/ex8840] centrale PC 2022 Deux joueurs jouent à tirer l’un après l’autre dans leur propre urne des boules avec remises. Dans l’urne du joueur 1, il y a une proportion \(p_1\) de boules rouges. Dans l’urne du joueur 2, il a une proportion \(p_2\) de boules rouges. La partie se joue en plusieurs manches : à la première manche, le joueur 1 tire une boule dans son urne et la remet, à la deuxième manche, le joueur 2 tire une boule dans son urne et la remet et ainsi de suite… Le jeu s’arrête lorsqu’un joueur a tiré une boule rouge.
[planches/ex8840]
Montrer que le jeu s’arrête presque sûrement.
Proposer des proportions \(p_1\) et \(p_2\) de sorte que les joueurs aient autant de chance de gagner chacun.
Donner l’espérance du nombre de manches jouées.
[probas/ex1078] Une urne contient 4 boules blanches et 6 boules noires. On en tire successivement deux échantillons aléatoires de taille 3 et 5 respectivement, ceci sans remise. Soient \(X\) et \(Y\) le nombre de boules blanches dans chacun de ces échantillons ; calculer \(E(X/Y=i)\) pour \(i=1\), 2, 3, 4.
[probas/ex1078]
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés