[oraux/ex6359] escp courts 2016 On utilise une pièce de monnaie qui donne pile avec la probabilité \(p \in\left]0,1\right[\).
[oraux/ex6359]
On commence par lancer la pièce jusqu’à obtenir une première fois Pile et on note \(N\) le nombre de lancers nécessaires. Si le premier Pile a été obtenu au \(n\)-ième lancer, on lance ensuite cette même pièce \(n^2\) fois et on note \(X\) le nombre de Pile obtenus au cours de ces \(n^2\) lancers.
Quelle est la loi suivie par \(N\) ? Donner l’espérance et la variance de \(N\).
Soit \(n \in \mathbf{N}^*\). Déterminer la loi conditionnelle de \(X\) sachant l’événement \((N=n)\).
En déduire l’existence et la valeur de l’espérance de \(X\).
[oraux/ex8315] polytechnique MP 2015 Soient \(X\) et \(Y\) deux variables aléatoires définies sur un même espace probabilisé et à valeurs dans \(\mathbf{Z}\). On suppose \(Y\) d’espérance finie.
[oraux/ex8315]
Montrer qu’il existe une fonction \(g:\mathbf{Z}\rightarrow\mathbf{R}\) telle que \(g(X)\) soit d’espérance finie et, pour toute fonction \(f:\mathbf{Z}\rightarrow\mathbf{R}\) bornée, on ait \(\mathbf{E}(Yf(X))=\mathbf{E}(g(X)f(X))\).
Montrer que \(g\) est unique à un ensemble de probabilité nulle (pour la loi de \(X\)) près.
[planches/ex8157] mines MP 2022 Soient \(X\), \(Y\) deux variables indépendantes à valeurs dans \(\mathbf{N}\). On suppose que, pour tout \(k\in\mathbf{N}\), \(\mathbf{P}(Y=k)>0\), et que \(\mathbf{E}(Y)<\infty\). Pour \(n\in\mathbf{N}\), on définit la variable aléatoire \(Z_n\) par \(Z_n(\omega)=X(\omega)\) si \(Y(\omega)\leqslant n\) et \(Z_n(\omega)=Y(\omega)\) sinon. Montrer que la suite \(\mathbf{E}(Z_n)\) possède une valeur maximale pour au plus deux valeurs de \(n\).
[planches/ex8157]
[probas/ex0326] Un sac contient 6 jetons numérotés de 1 à 6. On en tire successivement 3 sans remise. Soit \(X\) la variable aléatoire, qui à chaque tirage, associe le plus grand des numéros tirés, et \(Y\) celle qui associe le numéro intermédiaire.
[probas/ex0326]
Déterminer les lois de \(X\) et de \(Y\).
Calculer \(E(X)\) et \(E(Y)\).
Déterminer la loi du couple \((X,Y)\).
[probas/ex1741] Soit \((X,Y)\) un couple de variables aléatoires. Montrer que : \[[E(XY)]^2\leqslant E(X^2)\,E(Y^2).\] Cette inégalité est connue sous le nom d’inégalité de Cauchy-Schwarz.
[probas/ex1741]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher