[planches/ex7419] ccinp PC 2021 Soient \(X\) et \(Y\) deux variables aléatoires définies sur un même espace probabilisé. On suppose que \(X\) suit la loi binomiale de paramètres \(n\) et \(p\) avec \(p\in\left]0,1\right[\) et que \(Y\) suit la loi uniforme sur \(\{0,1,\ldots,n\}\).
[planches/ex7419]
On définit la variable aléatoire \(Z\) par \(\forall\omega\in\Omega\), \(Z(\omega)=\cases{X(\omega)&si $X(\omega)\neq0$\cr Y(\omega)&si $X(\omega)=0$.}\)
Déterminer la loi de \(Z\) et son espérance.
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher