[probas/ex1081] Un prisonnier est enfermé dans une cellule contenant 3 portes. La première ouvre un tunnel qui revient dans la cellule après une marche de 2 jours. La seconde porte donne sur un tunnel qui revient aussi à la cellule au bout d’un voyage de 4 jours. La troisième porte conduit à la liberté au bout d’un jour de marche. On suppose que le prisonnier choisit à chaque tentative les portes 1, 2, et 3 avec des probabilités \(0.5\), \(0.3\) et \(0.2\). Quelle est l’espérance du nombre de jours qu’il faudra au prisonnier pour retrouver sa liberté ?
[probas/ex1081]
[planches/ex4748] polytechnique MP 2019 Soient \(n\in\mathbf{N}^*\), \(H\) et \(K\) dans \(\mathscr{S}_n(\mathbf{R})\), \(R\) dans \(\mathscr{S}_n^+(\mathbf{R})\) de trace 1. Pour \((s,t)\in\mathbf{R}^2\), soit \(f(s,t)=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\left(Re^{i(tH+sK)}\right)\).
[planches/ex4748]
On suppose que \(KH=HK\). Montrer qu’il existe deux variables aléatoires réelles \(X\) et \(Y\) telles que \(\forall(s,t)\in\mathbf{R}^2\), \(f(s,t)=\mathbf{E}\left(e^{i(tX+sY)}\right)\).
En considérant \(R=\pmatrix{1&0\cr0&0}\), \(H=\pmatrix{0&1\cr1&0}\), \(K=\pmatrix{1&0\cr0&-1}\), montrer que le résultat précédent ne subsiste pas si l’on omet l’hypothèse \(HK=KH\).
On revient à la situation de la première question. Pour \(n\in\mathbf{N}^*\), \(\ell_1\), … , \(\ell_n\) dans \(\mathbf{R}\), \(s_1\), … , \(s_n\), \(t_1\), … , \(t_n\) dans \(\mathbf{C}\), montrer que \(\displaystyle\sum\limits_{1\leqslant i,j\leqslant n}\ell_i\overline\ell_j f(s_i-s_j,t_i-t_j)\geqslant 0\).
[probas/ex1467] La loi conjointe de deux variables aléatoires \(X\) et \(Y\) est donnée par le tableau : \[\begin{array}{|c|c|c|c|} \hline X\setminus Y&0&1&2\\\hline 0&1/18&1/9&1/6\\\hline 1&1/9&1/18&1/9\\\hline 2&1/6&1/6&1/18\\\hline\end{array}\] Calculer l’espérance conditionnelle de \(Y\) sachant \(X\), puis de \(X\) sachant \(Y\).
[probas/ex1467]
[probas/ex0326] Un sac contient 6 jetons numérotés de 1 à 6. On en tire successivement 3 sans remise. Soit \(X\) la variable aléatoire, qui à chaque tirage, associe le plus grand des numéros tirés, et \(Y\) celle qui associe le numéro intermédiaire.
[probas/ex0326]
Déterminer les lois de \(X\) et de \(Y\).
Calculer \(E(X)\) et \(E(Y)\).
Déterminer la loi du couple \((X,Y)\).
[planches/ex2857] escp courts S 2018 Soient \(n\) et \(m\) deux entiers tels que \(n\geqslant m\geqslant 1\), et \(p\in\left]0,1\right[\). On considère deux variables aléatoires \(X\) et \(Y\) définies sur le même espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\), indépendantes, telles que \(X\hookrightarrow\mathscr{B}(n,p)\) et \(Y\hookrightarrow\mathscr{B}(m,p)\).
[planches/ex2857]
On pose \(D=X-Y\). Donner la loi de \(D\) ; calculer son espérance et sa variance.
[examen/ex0565] centrale PC 2023 On dispose d’une pièce donnant pile avec un probabilité \(p\in\left]0,1\right[\). On lance cette pièce jusqu’à obtenir pile. On note \(N\) le nombre de lancers nécessaires pour obtenir ce premier pile. On lance ensuite \(N\) fois cette pièce et on note \(X\) le nombre de pile obtenus au cours de ces \(N\) lancers.
[examen/ex0565]
Quelle est la loi de \(N\) ? Donner la loi du couple \((N,X)\).
En déduire la loi de \(X\).
Soit \(\lambda\in\left]0,1\right[\). Soient \(U\), \(V\) deux variables aléatoires indépendantes telles que \(U\sim\mathscr{B}(\lambda)\) et \(V\sim\mathscr{G}(\lambda)\). Trouver \(\lambda\) tel que \(UV\sim X\).
Calculer \(\mathbf{E}(X)\) et \(\mathbf{V}(X)\).
[oraux/ex4776] escp S 2012 Une urne contient \(n\) boules numérotées de \(1\) à \(n\) et \(k\) boules bleues non numérotées. Les boules sont tirées avec remise jusqu’à ce qu’une boule bleue soit tirée. Au cours de ces tirages, on définit le nombre \(R\) de répétitions de la manière suivante :
[oraux/ex4776]
au début, \(R =0\). Ensuite, on ajoute \(1\) à \(R\) dès que l’on obtient une boule numérotée qui avait été déjà tirée précédemment.
Déterminer les probabilités des événements suivants :
\(A_1=\) « la première boule tirée est la boule numéro \(1\) ».
\(A_2=\) « la première boule tirée est une boule portant un numéro strictement supérieur à \(1\) ».
\(A_3=\) « la première boule tirée est une boule bleue ».
On note \(A_0\) l’événement « la boule numéro \(1\) n’est jamais tirée lors du jeu ». En utilisant la formule des probabilités totales avec les événements précédents, montrer que \(P(A_0) = \displaystyle{k\over k+1}\).
On note \(X\) le nombre de fois où l’on a tiré la boule \(1\) au cours du jeu. En utilisant un raisonnement analogue à celui de la question précédente, montrer que \(E(X) = \displaystyle{1\over k}\).
On définit la variable aléatoire \(Y\) par : \[\cases{\hbox{Si $X\geqslant 1$, alors $Y=X-1$}\cr \hbox{Si $X=0$, alors $Y=0$}\cr}\] (\(Y\) est donc le nombre de répétitions de la boule numérotée \(1\).)
Montrer que \(E(Y) =\sum\limits_{m\geqslant 1} (m-1) P(X = m)\) puis que \(E(Y) = \displaystyle{1\over k(k+1)}\).
Soit \(r\) un entier naturel. On recherche la valeur minimale de \(k\) (en fonction de \(n\) et \(r\)) de manière à ce que le nombre moyen \(t\) de répétitions soit inférieur ou égal à \(r\).
Montrer que \(t = n E(Y)\).
En déduire que la valeur minimale recherchée est \(k_0 = \left\lfloor{\sqrt{\displaystyle{n\over r} + {1\over4}} - \displaystyle{1\over2}}\right\rfloor\).
[planches/ex6857] mines MP 2021 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes suivant des lois géométriques de paramètres \(p\) et \(q\) dans \(\left]0,1\right[\). On pose \(Z_n=\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(-n(X+Y))\). Justifier que \(Z_n\) admet une variance. Trouver un équivalent de \(\mathbf{V}(Z_n)\).
[planches/ex6857]
[probas/ex0169] hec 1995 On considère un entier naturel \(n\) non nul, un réel \(p\) de \(\left]0,1\right[\) ; \(X\) est une variable aléatoire avec \(X\hookrightarrow\mathscr{B}(n,p)\).
[probas/ex0169]
Les valeurs prises par \(X\) sont affichées par un compteur défaillant ; lorsqu’il doit afficher 0, il affiche en fait au hasard un nombre compris entre 1 et \(n\) ; sinon il affiche le bon résultat.
Soit \(Y\) la variable aléatoire correspondant au numéro affiché par le compteur. Donner la loi de \(Y\) et \(E(Y)\).
[planches/ex6846] mines MP 2021 Soient \(n\in\mathbf{N}^*\), \((\Omega,\mathscr{T},\mathbf{P})\) un espace probabilité, \(X\) et \(Y\) deux variables aléatoires indépendantes définies sur \((\Omega,\mathscr{T},\mathbf{P})\) suivant la loi uniforme sur \(\{1,2,\ldots,n\}\), \(m\in\{1,\ldots,n\}\). Soit \(Z\) la variable aléatoire telle que \(Z(\omega)=X(\omega)\) si \(Y(\omega)\leqslant m\) et \(Z(\omega)=Y(\omega)\) sinon.
[planches/ex6846]
Déterminer la loi de \(Z\). Calculer \(\mathbf{E}(Z)\).
Déterminer les entiers \(m\) qui maximisent l’espérance de \(Z\).
[probas/ex1090] Des ampoules de type \(i\) fonctionnent pendant une durée aléatoire de moyenne \(\mu_i\) et d’écart-type \(\sigma_i\), \(i=1\), 2. Une ampoule choisie au hasard dans une boîte d’ampoules est de type 1 avec une probabilité \(p\) et de type 2 avec une probabilité \(1-p\). Soit \(X\) la durée de vie de cette ampoule. Trouver \(E(X)\) et \(V(X)\).
[probas/ex1090]
[planches/ex8266] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes et de même loi uniforme sur \([[1,n]]\). Soit \(m\in[[1,n]]\). Soit \(Z\) telle que \(Z=X\) si \(Y\leqslant m\), et \(Z=Y\) sinon.
[planches/ex8266]
Déterminer la loi de \(Z\).
Calculer les espérances de \(X\), \(Y\) et \(Z\).
Pour quels entiers \(m\in[[1,n]]\) l’espérance \(\mathbf{E}(Z)\) est-elle maximale ?
[probas/ex2054] On effectue un tirage avec remise de deux nombres entre 1 et 5. Soit \(X=0\) si le premier nombre tiré est pair et \(X=1\) sinon ; et \(Y=1\) si le deuxième nombre est impair et \(Y=0\) sinon. On pose \(Z=X+Y\).
[probas/ex2054]
Donner la loi de \(Z\).
Calculer \(\mathbf{E}(Z)\), et vérifier que \(\mathbf{E}(Z)=\mathbf{E}(X)+\mathbf{E}(Y)\).
Calculer \(\mathbf{V}(X)\), \(\mathbf{V}(Y)\) et \(\mathbf{V}(Z)\), et comparer \(\mathbf{V}(Z)\) à \(\mathbf{V}(X)+\mathbf{V}(Y)\).
[planches/ex4225] escp S 2018
[planches/ex4225]
On rappelle les résultats suivants :
Soit \(I\) un ensemble dénombrable infini indexé par \(\mathbf{N}\) sous la forme \(I=\{\phi(n),\ n\in\mathbf{N}\}\), où \(\phi\) est une bijection de \(\mathbf{N}\) dans \(I\). Si la série \(\displaystyle\sum\limits u_{\phi(n)}\) converge absolument, alors sa somme est indépendante de l’indexation \(\phi\), et pourra également être notée \(\displaystyle\sum\limits_{i\in I}u_i\). On dit alors que la série \(\displaystyle\sum\limits_{i\in I}u_i\) converge absolument.
Dans ce cas, si \(\displaystyle I=\bigsqcup_{j\in J}I_j\) (union disjointe) avec \(J\) un ensemble dénombrable et \(I_j\) des ensembles dénombrables pour tout \(j\), alors pour tout \(j\), \(\displaystyle\sum\limits_{k\in I_j}u_k\) converge absolument, et \[\sum\limits_{i\in I}u_i=\sum\limits_{j\in J}\left[\sum\limits_{k\in I_j}u_k\right].\]
Si \(I\) et \(J\) sont des ensembles dénombrables et si \(\displaystyle\sum\limits_{i\in I}u_i\) et \(\displaystyle\sum\limits_{j\in J}v_j\) sont absolument convergentes, alors \(\displaystyle\sum\limits_{(i,j)\in I\times J}\left(\vphantom{|_|}u_i\,v_j\right)\) aussi, et \[\left(\sum\limits_{i\in I}u_i\right)\left(\sum\limits_{j\in J}v_j\right)=\sum\limits_{(i,j)\in I\times J}\left(\vphantom{|_|}u_i\,v_j\right)\]
On prendra soin de justifier clairement, à l’aide de ces résultats, les calculs de sommes de séries qu’on sera amené à faire ci-dessous.
Soit \(p\) et \(q\) deux réels de l’intervalle \(\left]0,1\right[\).
Vérifier que : \(\forall(i,j)\in\mathbf{N}^2\), \(\mathbf{P}[(i,j)]=p\,q\,(1-p)^i\,(1-q)^j\) définit bien une probabilité \(\mathbf{P}\) sur \(\mathbf{N}^2\).
Déterminer les lois des variables aléatoires discrètes \(X\) et \(Y\) définies sur \(\left(\vphantom{|_|}\smash{\mathbf{N}^2,\mathscr{P}(\mathbf{N}^2),\mathbf{P}}\right)\) par \[\forall(i,j)\in\mathbf{N}^2,\quad X(i,j)=i\quad\hbox{et}\quad Y(i,j)=j\] et les relier à des lois connues.
Calculer \(\mathbf{P}(X=Y)\) et \(\mathbf{P}(X>Y)\).
Soit \(Z\) la variable aléatoire discrète définie par : \[\forall(i,j)\in\mathbf{N}^2,\quad Z(i,j)=\cases{\phantom{-}1&si $i$ et $j$ sont pairs,\cr-1&si $i$ et $j$ sont impairs,\cr\phantom{-}0&si $i$ et $j$ sont de parités différentes.}\] Montrer que \(Z\) admet une espérance et la calculer.
Soit \(D\) l’ensemble défini par \(D=\left\{\vphantom{|_|}(i,i),\ i\in\mathbf{N}\right\}\). Justifier que la série \(\displaystyle\sum\limits_{(i,i)\in D}Z(i,i)\,\mathbf{P}(i,i)\) est absolument convergente et calculer sa somme.
[planches/ex4250] escp B/L 2018 Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\).
[planches/ex4250]
Une urne contient exclusivement des boules rouges et noires indiscernables au toucher.
La proportion de boules rouges est \(p\in\left]0,1\right[\). On effectue des tirages successifs d’une boule avec remise.
On commence par effectuer des tirages de boules jusqu’à obtention d’une boule rouge ; on note \(N\) le nombre de tirages qui ont été nécessaires pour obtenir cette première boule rouge.
On effectue ensuite \(N\) tirages successifs et on s’intéresse à \(X\) qui représente le nombre de boules rouges obtenues lors de ces \(N\) tirages.
Quelle est la loi de de la variable aléatoire \(N\) ?
Pour un entier \(n\geqslant 1\), quelle est la loi conditionnelle de \(X\) sachant \([N=n]\) ?
Déterminer la loi du couple \((N,X)\).
Déterminer la loi de \(X\). On pourra utiliser sans démonstration l’égalité : \[(*)\quad\forall k\in\mathbf{N},\quad\forall x\in\left]-1,1\right[,\quad{1\over(1-x)^{k+1}}=\sum\limits_{m=0}^{+ \infty}{m+k\choose k}x^m.\]
Soit un réel \(\lambda\in\left]0,1\right[\). On considère deux variables aléatoires \(U\) et \(V\) indépendantes, telles que \(U\) suit une loi de Bernouilli de paramètre \(\lambda\) et \(V\) suit une loi géométrique de paramètre \(\lambda\).
Déterminer la loi de la variable aléatoire \(UV\).
En déduire que \(X\) a même loi qu’un produit de deux variables aléatoires indépendantes, l’une suivant une loi de Bernoulli et l’autre une loi géométrique.
Exprimer \(\mathbf{E}(X)\) et \(\mathbf{V}(X)\) en fonction de \(\lambda\).
[probas/ex0253] Une urne contient 7 boules rouges et 5 blanches. On choisit au hasard un nombre entier \(N\), \(1\leqslant N\leqslant 5\), puis on tire \(N\) boules de l’urne.
[probas/ex0253]
Calculer l’espérance et la variance du nombre de boules blanches obtenues :
le tirage ayant lieu avec remise ;
le tirage ayant lieu sans remise.
Sachant que l’on a obtenu 3 boules rouges, calculer \(E(N)\) :
[concours/ex5019] escp S 2000 Si \(X\) est un ensemble, on note \({\cal P}(X)\) l’ensemble des parties de \(X\) et pour tout entier naturel \(k\), \({\cal P}_k(X)\) désigne l’ensemble des parties de \(X\) à \(k\) éléments.
[concours/ex5019]
Dans tout l’exercice, \(n\) est un entier naturel non nul et \(E_n\) désigne l’ensemble \(\{1,2,\ldots ,n\}\).
Soient \(a\) et \(b\) deux entiers tels que \(1\leqslant a\leqslant n\) et \(1\leqslant b\leqslant n\). On tire au hasard une partie \(A\) dans \({\cal P}_a(E_n)\) et une partie \(B\) dans \({\cal P}_b(E_n)\). On note \(X\) la variable aléatoire égale au nombre d’éléments de \(A\cap B\) et \(Y\) la variable aléatoire égale au nombre d’éléments de \(A\cup B\).
Dans le cas particulier où \(n=7\), \(a=4\), \(b=2\), déterminer la loi de \(X\).
Dans le cas général, calculer l’espérance des variables \(X\) et \(Y\).
Sous la contrainte \(a+b=n\), quels sont les couples \((a,b)\) pour lesquels l’espérance de \(X\) est maximale ?
On tire au hasard une partie \(C\) dans \({\cal P}(E_n)\), puis on tire au hasard une partie \(D\) dans \({\cal P}(C)\). On note \(Z\) la variable aléatoire égale au cardinal de \(D\).
Déterminer la loi de \(Z\) et son espérance.
[concours/ex4924] escp S 2001
[concours/ex4924]
Soient deux entiers naturels \(n\) et \(r\) avec \(0\leqslant r\leqslant n\).
On définit la fonction \(F_{r,n}\) sur \(\mathbf{R}\) par : \[\forall x\in\mathbf{R},\quad F_{r,n}(x)=\sum\limits\limits_{k=r}^n{k\choose r} x^k.\]
Montrer que pour tout \(x\) réel, on a \((1-x)F_{r,n}(x)\ =\ xF_{r-1,n-1}(x) - \displaystyle{n\choose r} x^{n+1}\).
Soit \(x\in\left]0,1\right[\) et \(r\in \mathbf{N}\) fixés. Donner un équivalent simple de \(\displaystyle{n\choose r}x^{n+1}\) quand \(n\) tend vers l’infini.
Montrer que pour tout \(x\) tel que \(0<x<1\) et \(r\in\mathbf{N}\) fixés, \(F_{r,n}(x)\) admet une limite lorsque \(n\) tend vers l’infini et déterminer cette limite.
On dispose de deux pièces de monnaie. La première pièce donne « Pile » avec la probabilité \(p\) et la seconde avec la probabilité \(q=1-p\). (\(p\in\left]0,1\right[\)).
on lance la première pièce jusqu’à obtenir pour la première fois « Pile ». Soit \(N\) le nombre de lancers effectués.
On lance alors \(N\) fois la seconde pièce et on note \(X\) la variable aléatoire égale au nombre de « Pile » obtenus durant ces \(N\) tirages.
Déterminer la loi de \(X\).
Calculer son espérance. Commenter les cas où \(p=q=1/2\) et où \(p\) est de la forme \(1/r\).
[oraux/ex8341] mines PSI 2015
[oraux/ex8341]
Soient \(X\) et \(Y\) deux variables aléatoires réelles telles que \(X^2\) et \(Y^2\) admettent une espérance. Montrer que \(XY\) admet une espérance.
Soient \(a\in[0,1]\) et \(X\) une variable aléatoire positive admettant une espérance. Montrer l’inégalité \((1-a)\mathbf{E}(X)\leqslant\mathbf{E}(X.\mathbf1_{X\geqslant a\mathbf{E}(X)})\).
[probas/ex0010] Soit \((X,Y)\) un couple de V.A.R. à valeurs dans \(\mathbf{N}^2\) tel que : \[\forall(j,k)\in\mathbf{N}^2,\quad P([X=j]\cap[Y=k])={j+k\over e\cdot2^{j+k}j\,!\,k\,!}.\]
[probas/ex0010]
Vérifier que l’on a bien défini ainsi la loi de probabilité de \((X,Y)\).
Calculer \(E(2^{X+Y})\).
Le clic gauche sur un énoncé ou une référence d'exercice rajoute (ou enlève) cet exercice à la liste des exercices sélectionnés