[planches/ex7419] ccinp PC 2021 Soient \(X\) et \(Y\) deux variables aléatoires définies sur un même espace probabilisé. On suppose que \(X\) suit la loi binomiale de paramètres \(n\) et \(p\) avec \(p\in\left]0,1\right[\) et que \(Y\) suit la loi uniforme sur \(\{0,1,\ldots,n\}\).
[planches/ex7419]
On définit la variable aléatoire \(Z\) par \(\forall\omega\in\Omega\), \(Z(\omega)=\cases{X(\omega)&si $X(\omega)\neq0$\cr Y(\omega)&si $X(\omega)=0$.}\)
Déterminer la loi de \(Z\) et son espérance.
[probas/ex0241] Une urne contient \(N\) boules numérotées de 1 à \(N\). On effectue \(N\) tirages avec remise et on note \(Z_n\) le nombre de numéros non encore sortis à l’issue du \(n\)-ième tirage.
[probas/ex0241]
Déterminer la loi de \(Z_1\).
Calculer \(E(Z_n)\).
Déterminer la probabilité d’obtenir au \(n\)-ième tirage un numéro qui n’est pas encore sorti.
[concours/ex6693] escp S 2008 Un vendeur de cycles vend des pédales de bicyclette qu’il se procure chez son grossiste par boîtes de deux ; toutes les boîtes sont supposées identiques et dans chaque boîte il y a une pédale droite et une pédale gauche.
[concours/ex6693]
Lorsqu’un client demande le remplacement de ses deux pédales de vélo, le commerçant lui vend une boîte complète et lui fait payer la somme de \(2r\) euros.
Lorsqu’un client demande le remplacement d’une seule des deux pédales, le commerçant décide de ne pas obliger le client à acheter une boîte complète, mais majore le prix de la pédale dans une proportion \(\alpha\), c’est-à-dire lui fait payer la somme de \((1 + \alpha)r\) euros.
Pour la simplicité de l’étude, on suppose que l’on sait que le nombre de pédales à poser séparément pendant la durée de l’étude vaut \(2n\), où \(n\) est un entier naturel non nul. On suppose que le vendeur ne dispose au départ que de boîtes complètes et en nombre suffisant.
Soit \(p\) la probabilité qu’une demande d’un client qui ne demande qu’une pédale corresponde à une pédale droite (\(p\) n’est pas nécessairement égal à \(1/2\)) et \(X\) le nombre de boîtes nécessaires à la satisfaction de ces \(2n\) demandes. (le commerçant n’ouvre une boîte que s’il ne dispose pas d’une boîte entamée lui permettant d’accéder à la demande du client)
Quelle est la loi de \(X\) ? On précisera l’ensemble des valeurs prises par \(X\).
Montrer que \(X\) peut s’écrire : \(X=a+\left|Y-b\right|\), où \(a\) et \(b\) sont des constantes qu’on précisera et \(Y\) une variable aléatoire qui suit une loi binomiale.
Donner l’expression l’espérance de \(E(X)\) en fonction de \(n\) et \(p\).
Dans la suite, on prendra la valeur \(p=1/2\).
Quelle majoration \(\alpha\) le marchand de cycles doit-il appliquer au prix de chaque pédale vendue séparément pour qu’en moyenne le prix de vente des \(2n\) pédales vendues séparément soit égal au prix de vente des \(X\) boîtes nécessaires vendues \(2r\) euros chacune.
La valeur \(\alpha\) trouvée dépend de \(n\) et on la note dorénavant \(\alpha_n\). Prouver que la suite \((\alpha_n)\) est décroissante. Donner un équivalent simple de \(\alpha_n\) et la limite de \(\alpha_n\) lorsque \(n\) tend vers \(+\infty\).
\([[\)On admettra la formule de Stirling : \(n\,!\sim\sqrt{2\pi n}\big(\displaystyle{n\over e}\big)^{n}\) \(]]\)
[probas/ex2091] Deux cartes sont tirées au hasard d’un jeu en contenant 5, numérotées 1, 1, 2, 2 et 3. Soit \(X\) la somme et \(Y\) le maximum des deux nombres obtenus. Calculer la loi, l’espérance, la variance et l’écart-type de \(X\), \(Y\), \(Z=X+Y\), \(W=XY\).
[probas/ex2091]
[planches/ex4748] polytechnique MP 2019 Soient \(n\in\mathbf{N}^*\), \(H\) et \(K\) dans \(\mathscr{S}_n(\mathbf{R})\), \(R\) dans \(\mathscr{S}_n^+(\mathbf{R})\) de trace 1. Pour \((s,t)\in\mathbf{R}^2\), soit \(f(s,t)=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\left(Re^{i(tH+sK)}\right)\).
[planches/ex4748]
On suppose que \(KH=HK\). Montrer qu’il existe deux variables aléatoires réelles \(X\) et \(Y\) telles que \(\forall(s,t)\in\mathbf{R}^2\), \(f(s,t)=\mathbf{E}\left(e^{i(tX+sY)}\right)\).
En considérant \(R=\pmatrix{1&0\cr0&0}\), \(H=\pmatrix{0&1\cr1&0}\), \(K=\pmatrix{1&0\cr0&-1}\), montrer que le résultat précédent ne subsiste pas si l’on omet l’hypothèse \(HK=KH\).
On revient à la situation de la première question. Pour \(n\in\mathbf{N}^*\), \(\ell_1\), … , \(\ell_n\) dans \(\mathbf{R}\), \(s_1\), … , \(s_n\), \(t_1\), … , \(t_n\) dans \(\mathbf{C}\), montrer que \(\displaystyle\sum\limits_{1\leqslant i,j\leqslant n}\ell_i\overline\ell_j f(s_i-s_j,t_i-t_j)\geqslant 0\).
[planches/ex8260] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes de même loi géométrique de paramètre \(p\).
[planches/ex8260]
Déterminer la loi de la variable \(T=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\) ; préciser son espérance et sa fonction génératrice.
Montrer que la variable \(\displaystyle{1\over T(T+1)}\) admet une espérance finie puis la calculer.
[planches/ex6357] hec E 2021 Le jeu de mémory est composé de \(n\) (\(n\) étant un entier naturel non nul) paires d’images deux à deux distinctes, sur une seule des \(n\) paires sont représentés des chatons. Ces images sont réparties en deux tas : chaque paire aura une de ses images dans chaque tas. Les images sont posées face cachée. À chaque étape, une carte de chaque tas est retournée. Si les deux cartes retournées forment la paire de chatons, alors le jeu s’arrête, sinon les cartes sont retournées et les tas à nouveau mélangés.
[planches/ex6357]
Deux joueurs \(A\) et \(B\) jouent en parallèle. Ils possèdent chacun leur propre jeu de mémory et jouent indépendamment, mais réalisent leurs étapes en même temps. On note \(X\) (respectivement \(Y\)) le nombre d’étapes de jeu effectuées par le joueur \(A\) (respectivement \(B\)) lorsqu’il trouve la paire de chatons. On note de plus : \(M = \mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\). On admet que \(M\) est une variable aléatoire.
Question de cours : Énoncer la définition de l’espérance d’une variable aléatoire discrète.
Donner la loi de \(X\), son espérance et sa variance.
Pour tout entier naturel \(k\), déterminer \(\mathbf{P}\big( {M \leqslant k} \big)\).
Montrer que la série \(\displaystyle\sum\limits_{k \geqslant 0} \mathbf{P}\big( {M > k} \big)\) converge.
Montrer que pour tout entier naturel \(K\) non nul : \[\displaystyle\sum\limits_{k=1}^{K} k \, \mathbf{P}\big( {M = k} \big) \ = \ -K \, \mathbf{P}\big( {M > K} \big) + \displaystyle\sum\limits_{k=0}^{K-1} \mathbf{P}\big( {M > K} \big)\]
En déduire que \(M\) admet une espérance.
Montrer que la suite \(\Big(K \, \mathbf{P}\big( {M>K} \big) \Big)_{K \geqslant 0}\) converge vers \(0\).
Déterminer \(\mathbf{E}(M)\).
[probas/ex1090] Des ampoules de type \(i\) fonctionnent pendant une durée aléatoire de moyenne \(\mu_i\) et d’écart-type \(\sigma_i\), \(i=1\), 2. Une ampoule choisie au hasard dans une boîte d’ampoules est de type 1 avec une probabilité \(p\) et de type 2 avec une probabilité \(1-p\). Soit \(X\) la durée de vie de cette ampoule. Trouver \(E(X)\) et \(V(X)\).
[probas/ex1090]
[concours/ex5183] escp S 2007 On dispose d’une pièce de monnaie donnant « pile » avec la probabilité \(p\) et « face » avec la probabilité \(q=1-p\) (avec \(p\in\left]0,1\right[\)).
[concours/ex5183]
On lance cette pièce, les lancers étant indépendants les uns des autres, et on note \(N\) le nombre aléatoire de lancers nécessaires à la première apparition de « pile » (on pose \(N=-1\) si « pile » n’apparaît jamais).
Quand « pile » apparaît au bout de \(n\) lancers, on effectue une série de \(n\) lancers avec cette même pièce et on note \(X\) le nombre de « pile » obtenus au cours de cette série.
Quelle est la loi de \(N\) ?
Déterminer la loi du couple \((N,X)\).
Calculer \(P(X=0)\) et \(P(X=1)\).
Pour tout entier naturel \(k\) non nul, exprimer \(P(X=k)\) sous forme d’une série.
Calculer la somme de cette série.
On rappelle que si \(|x|<1\) alors \(\displaystyle \sum\limits\limits_{k=r}^{+\infty}{k\choose r}x^{k-r}=\displaystyle{1\over(1-x)^{r+1}}\)
Déterminer l’espérance de \(X\) par deux méthodes : une première fois par calcul direct, une deuxième en utilisant la formule de l’espérance totale. Pourquoi ce résultat est-il raisonnable ?
[concours/ex4638] escp S 2004
[concours/ex4638]
Compléter les lignes de programme suivantes pour en faire un programme complet :
randomize; N:=random(m)+1;X:=0; For i:=1 to N Do X:=X+random(2); Writeln(N,’ ’,X);
randomize;
N:=random(m)+1;X:=0;
For i:=1 to N Do X:=X+random(2);
Writeln(N,’ ’,X);
(on rappelle que lorsque \(a\) est un integer, random(a) renvoie une valeur integer au hasard comprise entre 0 et \(a-1\), et que la procédure randomize permet d’initialiser la fonction random.)
integer
random(a)
randomize
random
On suppose que la première valeur affichée est \(4\). Quelles sont les valeurs possibles pour la seconde valeur affichée ?
On suppose que le programme précédent simule une expérience aléatoire. Quelle est alors la loi suivie par la variable aléatoire simulée par \(N\), son espérance, sa variance ?
Préciser \(X(\Omega)\) et calculer, pour tout couple \((i,k)\), \(P(X=i/N=k)\). En déduire la loi de \(X\).
Déterminer l’espérance de \(X\).
Vous pouvez choisir le type d'affichage de la liste des résultats : tableau ou liste