[probas/ex1099] On lance deux dés. Soit \(X\) la valeur du premier dé et \(Y\) la somme des deux valeurs. Calculer la fonction génératrice des moments conjoints de \(X\) et \(Y\).
[probas/ex1099]
[concours/ex6693] escp S 2008 Un vendeur de cycles vend des pédales de bicyclette qu’il se procure chez son grossiste par boîtes de deux ; toutes les boîtes sont supposées identiques et dans chaque boîte il y a une pédale droite et une pédale gauche.
[concours/ex6693]
Lorsqu’un client demande le remplacement de ses deux pédales de vélo, le commerçant lui vend une boîte complète et lui fait payer la somme de \(2r\) euros.
Lorsqu’un client demande le remplacement d’une seule des deux pédales, le commerçant décide de ne pas obliger le client à acheter une boîte complète, mais majore le prix de la pédale dans une proportion \(\alpha\), c’est-à-dire lui fait payer la somme de \((1 + \alpha)r\) euros.
Pour la simplicité de l’étude, on suppose que l’on sait que le nombre de pédales à poser séparément pendant la durée de l’étude vaut \(2n\), où \(n\) est un entier naturel non nul. On suppose que le vendeur ne dispose au départ que de boîtes complètes et en nombre suffisant.
Soit \(p\) la probabilité qu’une demande d’un client qui ne demande qu’une pédale corresponde à une pédale droite (\(p\) n’est pas nécessairement égal à \(1/2\)) et \(X\) le nombre de boîtes nécessaires à la satisfaction de ces \(2n\) demandes. (le commerçant n’ouvre une boîte que s’il ne dispose pas d’une boîte entamée lui permettant d’accéder à la demande du client)
Quelle est la loi de \(X\) ? On précisera l’ensemble des valeurs prises par \(X\).
Montrer que \(X\) peut s’écrire : \(X=a+\left|Y-b\right|\), où \(a\) et \(b\) sont des constantes qu’on précisera et \(Y\) une variable aléatoire qui suit une loi binomiale.
Donner l’expression l’espérance de \(E(X)\) en fonction de \(n\) et \(p\).
Dans la suite, on prendra la valeur \(p=1/2\).
Quelle majoration \(\alpha\) le marchand de cycles doit-il appliquer au prix de chaque pédale vendue séparément pour qu’en moyenne le prix de vente des \(2n\) pédales vendues séparément soit égal au prix de vente des \(X\) boîtes nécessaires vendues \(2r\) euros chacune.
La valeur \(\alpha\) trouvée dépend de \(n\) et on la note dorénavant \(\alpha_n\). Prouver que la suite \((\alpha_n)\) est décroissante. Donner un équivalent simple de \(\alpha_n\) et la limite de \(\alpha_n\) lorsque \(n\) tend vers \(+\infty\).
\([[\)On admettra la formule de Stirling : \(n\,!\sim\sqrt{2\pi n}\big(\displaystyle{n\over e}\big)^{n}\) \(]]\)
[probas/ex1078] Une urne contient 4 boules blanches et 6 boules noires. On en tire successivement deux échantillons aléatoires de taille 3 et 5 respectivement, ceci sans remise. Soient \(X\) et \(Y\) le nombre de boules blanches dans chacun de ces échantillons ; calculer \(E(X/Y=i)\) pour \(i=1\), 2, 3, 4.
[probas/ex1078]
[planches/ex8260] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes de même loi géométrique de paramètre \(p\).
[planches/ex8260]
Déterminer la loi de la variable \(T=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\) ; préciser son espérance et sa fonction génératrice.
Montrer que la variable \(\displaystyle{1\over T(T+1)}\) admet une espérance finie puis la calculer.
[probas/ex2054] On effectue un tirage avec remise de deux nombres entre 1 et 5. Soit \(X=0\) si le premier nombre tiré est pair et \(X=1\) sinon ; et \(Y=1\) si le deuxième nombre est impair et \(Y=0\) sinon. On pose \(Z=X+Y\).
[probas/ex2054]
Donner la loi de \(Z\).
Calculer \(\mathbf{E}(Z)\), et vérifier que \(\mathbf{E}(Z)=\mathbf{E}(X)+\mathbf{E}(Y)\).
Calculer \(\mathbf{V}(X)\), \(\mathbf{V}(Y)\) et \(\mathbf{V}(Z)\), et comparer \(\mathbf{V}(Z)\) à \(\mathbf{V}(X)+\mathbf{V}(Y)\).
[probas/ex1081] Un prisonnier est enfermé dans une cellule contenant 3 portes. La première ouvre un tunnel qui revient dans la cellule après une marche de 2 jours. La seconde porte donne sur un tunnel qui revient aussi à la cellule au bout d’un voyage de 4 jours. La troisième porte conduit à la liberté au bout d’un jour de marche. On suppose que le prisonnier choisit à chaque tentative les portes 1, 2, et 3 avec des probabilités \(0.5\), \(0.3\) et \(0.2\). Quelle est l’espérance du nombre de jours qu’il faudra au prisonnier pour retrouver sa liberté ?
[probas/ex1081]
[concours/ex4849] escp S 2002 On considère les lancers successifs (indépendants) d’une pièce non pipée et on note \(T\) le nombre de Face précédant le premier Pile. On propose à un joueur la suite de paris suivante :
[concours/ex4849]
Pari \(P_0\): si \(T=0\), on perd \(1\) Euro; si \(T=1\), on gagne \(3\) Euros; sinon on ne gagne ni ne perd rien;
Pari \(P_1\): si \(T=1\), on perd \(4\) Euros; si \(T=2\), on gagne \(9\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_2\): si \(T=2\), on perd \(10\) Euros ; si \(T=3\), on gagne \(27\) Euros; sinon, on ne gagne ni ne perd rien;
Pari \(P_n\): si \(T=n\), on perd \(3^n+1\) Euros; si \(T=n+1\), on gagne \(3^{n+1}\) Euros; sinon, on ne gagne ni ne perd rien;
Chaque pari est-il favorable au joueur ?
Calculer l’espérance du gain \(\Gamma\) si le joueur parie sur la suite de tous les résultats.
[concours/ex4639] escp S 2004 On considère une variable aléatoire \(X\) telle que : \(X(\Omega)=\mathbf{N}\) et \(\forall k\in\mathbf{N}\), \(P(X=k)=p.q^k\), où \(p\) est un réel fixé de \(\left]0,1\right[\) et \(q=1-p\).
[concours/ex4639]
Montrer que \(X\) admet des moments de tous ordres et calculer \(E(X)\) et \(V(X)\).
On pose \(Y=\displaystyle{1\over X+1}\).
Déterminer la loi de \(Y\).
Montrer que pour \(t\in\left[0,1\right[\) et \(n\in\mathbf{N}\) : \(\sum\limits\limits_{k=1}^{n+1}\displaystyle{t^k\over k}+\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-t)=\displaystyle\int_0^t{x^{n+1}\over 1-x}\,dx\).
En déduire que pour \(t\in\left[0,1\right[\), \(\sum\limits\limits_{k=1}^{+\infty}\displaystyle{t^k\over k}=-\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-t)\).
Montrer que \(Y\) admet une espérance et calculer \(E(Y)\).
Soit \(Z\) une variable aléatoire à valeurs dans \(\mathbf{N}\) telle que, pour tout \(k\) de \(\mathbf{N}\), la loi conditionnelle de \(Z\) conditionnée par la réalisation de l’événement \((X=k)\) est uniforme sur \([[0;k]]\).
Déterminer la loi de \(Z\) (on laissera les résultats sous forme de sommes).
Montrer que \(Z\) admet une espérance.
[probas/ex2300] Vrai ou faux ?
[probas/ex2300]
Si \(X\) et \(Y\) sont deux variables possédant une variance et si \(X\leqslant Y\), alors on a : \(\mathbf{V}(X)\leqslant\mathbf{V}(Y)\).
[planches/ex8266] mines PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes et de même loi uniforme sur \([[1,n]]\). Soit \(m\in[[1,n]]\). Soit \(Z\) telle que \(Z=X\) si \(Y\leqslant m\), et \(Z=Y\) sinon.
[planches/ex8266]
Déterminer la loi de \(Z\).
Calculer les espérances de \(X\), \(Y\) et \(Z\).
Pour quels entiers \(m\in[[1,n]]\) l’espérance \(\mathbf{E}(Z)\) est-elle maximale ?
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée