[planches/ex8157] mines MP 2022 Soient \(X\), \(Y\) deux variables indépendantes à valeurs dans \(\mathbf{N}\). On suppose que, pour tout \(k\in\mathbf{N}\), \(\mathbf{P}(Y=k)>0\), et que \(\mathbf{E}(Y)<\infty\). Pour \(n\in\mathbf{N}\), on définit la variable aléatoire \(Z_n\) par \(Z_n(\omega)=X(\omega)\) si \(Y(\omega)\leqslant n\) et \(Z_n(\omega)=Y(\omega)\) sinon. Montrer que la suite \(\mathbf{E}(Z_n)\) possède une valeur maximale pour au plus deux valeurs de \(n\).
[planches/ex8157]
[concours/ex4746] escp S 2003
[concours/ex4746]
Pour \(m\geqslant 1\), on considère une série statistique \((M_i)_{1\leqslant i\leqslant m}\) à deux variables. La première variable est notée \(Z\), la seconde \(T\) et on écrit \(M_i(z_i,t_i)\) pour tout \(i\) de \(\{1,\ldots,m\}\).
Pour les applications numériques on prend \(\overline{Z}=\overline{T}=10\), \(V(Z)=V(T)=9\) et \({\rm cov}(Z,T)=4\) et on pose \(A=\left(\begin{array}{cc}9&4\\ 4&9\end{array}\right)\).
On identifie les éléments de \(\mathbf{R}^2\) et de \({\cal M}_{2,1}(\mathbf{R})\).
Diagonaliser \(A\) dans une base orthonormale \((e_1,e_2)\) de \(\mathbf{R}^2\) pour le produit scalaire usuel.
Déterminer une matrice \(P\) de \({\cal M}_2(\mathbf{R})\) telle que \(P^{-1}={}^tP\) et \(^tPAP\) soit diagonale.
Pour tout \((x,y)\) de \(\mathbf{R}^2\) on pose \(f(x,y)= \left(\begin{array}{cc}x&y\end{array}\right)\times A\times \left(\begin{array}{c}x\\ y\end{array}\right)\).
Montrer que l’application \((x,y)\mapsto \displaystyle{f(x,y)\over x^2+y^2}\) admet un minimum et un maximum sur \(E=\mathbf{R}^2\setminus\{(0,0)\}\), extremums que l’on déterminera (on pourra travailler dans la base \((e_1,e_2)\)).
En déduire les \((\alpha,\beta)\) de \(\mathbf{R}^2\) tels que \(\alpha^2+\beta^2=1\) qui donnent une série statistique \(\alpha\,Z+\beta\,T\) de variance maximale ; même question pour \(\alpha Z+\beta T\) de variance minimale. Déterminer les extremums.
Si l’on appelle \(u_1=(\alpha_1,\beta_1)\) un couple qui donne une série statistique de variance minimale, déterminer une équation de la droite passant par le point moyen de la série et dirigée par ce vecteur.
Montrer que cette droite est celle qui réalise le minimum de la somme des carrés des distances des points \(M_i\) à une droite \(\Delta\) passant par le point moyen \(\Omega(\overline Z,\overline T)\), d’équation \(\alpha\,x+\beta\,y+c=0\) dans le plan \(\mathbf{R}^2\) muni de sa structure euclidienne canonique (on pourra utiliser la formule \(d(M_i,\Delta)=\displaystyle{|\alpha\,z_i+\beta\,t_i+c|\over\sqrt{\alpha^2+\beta^2}}\) qui donne la distance d’un point \(M_i\) à la droite \(\Delta\) d’équation \(\alpha\,x+\beta\,y+c=0\)).
Qu’en est-il si l’on n’impose plus à la droite de passer par \(\Omega\) ?
Déterminer les \((\alpha,\beta)\) tels que \(\alpha\geqslant 0\), \(\beta\geqslant 0\) et \(\alpha+\beta=1\) pour lesquels la série statistique \(\alpha Z+\beta T\) admet une variance maximale que l’on déterminera ; même question pour \(\alpha Z+\beta T\) de variance minimale.
[examen/ex0565] centrale PC 2023 On dispose d’une pièce donnant pile avec un probabilité \(p\in\left]0,1\right[\). On lance cette pièce jusqu’à obtenir pile. On note \(N\) le nombre de lancers nécessaires pour obtenir ce premier pile. On lance ensuite \(N\) fois cette pièce et on note \(X\) le nombre de pile obtenus au cours de ces \(N\) lancers.
[examen/ex0565]
Quelle est la loi de \(N\) ? Donner la loi du couple \((N,X)\).
En déduire la loi de \(X\).
Soit \(\lambda\in\left]0,1\right[\). Soient \(U\), \(V\) deux variables aléatoires indépendantes telles que \(U\sim\mathscr{B}(\lambda)\) et \(V\sim\mathscr{G}(\lambda)\). Trouver \(\lambda\) tel que \(UV\sim X\).
Calculer \(\mathbf{E}(X)\) et \(\mathbf{V}(X)\).
[examen/ex0901] escp courts S 2021 Soit \(X\), \(Y\) deux variables aléatoires indépendantes suivant une loi uniforme sur \([[1,n]]\), soit \(g\) une bijection de \([[1,n]]\) sur lui-même.
[examen/ex0901]
On pose \(T=g(X)\) et \(Z=\mathbf1_{[Y\leqslant g(X)]}\).
Quelle est la loi de \(T\) ? Montrer que \(n\mathbf{E}(Z)=\mathbf{E}(T)\).
Que dire de leurs variances ?
[probas/ex0253] Une urne contient 7 boules rouges et 5 blanches. On choisit au hasard un nombre entier \(N\), \(1\leqslant N\leqslant 5\), puis on tire \(N\) boules de l’urne.
[probas/ex0253]
Calculer l’espérance et la variance du nombre de boules blanches obtenues :
le tirage ayant lieu avec remise ;
le tirage ayant lieu sans remise.
Sachant que l’on a obtenu 3 boules rouges, calculer \(E(N)\) :
[oraux/ex8696] ensam PSI 2016 Soient \(X_1\) et \(X_2\) deux variables aléatoires indépendantes suivant une loi géométrique de paramètre \(p\). On pose \(q=1-p\) et \(Y=|X_1-X_2|\).
[oraux/ex8696]
Calculer \(\mathbf{P}(Y=0)\). Soit \(n\in\mathbf{N}\). Montrer que \(\mathbf{P}(X_1-X_2=n)=\displaystyle{pq^n\over1+q}\). En déduire la loi de \(Y\).
Montrer que \(Y\) admet une espérance et la calculer.
Montrer que \(\mathbf{E}((X_1-X_2)^2)=2\mathbf{V}(X_1)\). En déduire que \(Y\) admet une variance et la calculer.
[concours/ex4639] escp S 2004 On considère une variable aléatoire \(X\) telle que : \(X(\Omega)=\mathbf{N}\) et \(\forall k\in\mathbf{N}\), \(P(X=k)=p.q^k\), où \(p\) est un réel fixé de \(\left]0,1\right[\) et \(q=1-p\).
[concours/ex4639]
Montrer que \(X\) admet des moments de tous ordres et calculer \(E(X)\) et \(V(X)\).
On pose \(Y=\displaystyle{1\over X+1}\).
Déterminer la loi de \(Y\).
Montrer que pour \(t\in\left[0,1\right[\) et \(n\in\mathbf{N}\) : \(\sum\limits\limits_{k=1}^{n+1}\displaystyle{t^k\over k}+\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-t)=\displaystyle\int_0^t{x^{n+1}\over 1-x}\,dx\).
En déduire que pour \(t\in\left[0,1\right[\), \(\sum\limits\limits_{k=1}^{+\infty}\displaystyle{t^k\over k}=-\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-t)\).
Montrer que \(Y\) admet une espérance et calculer \(E(Y)\).
Soit \(Z\) une variable aléatoire à valeurs dans \(\mathbf{N}\) telle que, pour tout \(k\) de \(\mathbf{N}\), la loi conditionnelle de \(Z\) conditionnée par la réalisation de l’événement \((X=k)\) est uniforme sur \([[0;k]]\).
Déterminer la loi de \(Z\) (on laissera les résultats sous forme de sommes).
Montrer que \(Z\) admet une espérance.
[probas/ex1059] Une bouteille contient initialement \(m\) grandes pilules et \(n\) petites pilules. Chaque jour un patient choisit au hasard une des pilules. S’il choisit une petite pilule, il l’avale. S’il en choisit une grande, il la coupe en deux, il en remet une part (considérée maintenant comme une petite pilule) dans la bouteille et avale l’autre.
[probas/ex1059]
Soit \(X\) le nombre de petites pilules dans la bouteille après que la dernière grande pilule a été choisie et que sa petite moitié a été replacée. Trouver \(E(X)\).
Indication : on pourra définir \(n+m\) variables indicatrices, une pour chaque petite pilule présente initialement et une pour chacune des \(m\) petites pilules crées en coupant une grande.
Soit \(Y\) le jour où la dernière grande pilule est choisie. Trouver \(E(Y)\).
Indication : on pourra chercher une relation entre \(X\) et \(Y\).
[probas/ex1077] On lance plusieurs fois un dé équilibré. Soient \(X\) et \(Y\) le nombre de jets nécessaires pour obtenir un 6 et un 5, respectivement. Trouver :
[probas/ex1077]
\(E(X)\) ;
\(E(X/Y=1)\) ;
\(E(X/Y=5)\).
[probas/ex1741] Soit \((X,Y)\) un couple de variables aléatoires. Montrer que : \[[E(XY)]^2\leqslant E(X^2)\,E(Y^2).\] Cette inégalité est connue sous le nom d’inégalité de Cauchy-Schwarz.
[probas/ex1741]
Vous pouvez produire plusieurs PDF en répartissant les exercices choisis