[probas/ex1470] La loi conjointe de deux variables aléatoires \(X\) et \(Y\) est donnée par le tableau : \[\begin{array}{|c|c|c|c|} \hline X\setminus Y&0&1&2\\\hline 0&1/18&1/9&1/6\\\hline 1&1/9&1/18&1/9\\\hline 2&1/6&1/6&1/18\\\hline\end{array}\] Calculer la variance conditionnelle de \(Y\) sachant \(X\), puis de \(X\) sachant \(Y\).
[probas/ex1470]
[planches/ex4055] ccp MP 2018 Soient \(n\in\mathbf{N}\), \(X\) et \(Y\) deux variables aléatoires à valeurs dans \(\{1,\ldots,n+1\}\) telles que, pour tout \((i,j)\in\{1,\ldots,n+1\}^2\), \(\mathbf{P}(X=i,Y=j)=a_{i,j}=\lambda\displaystyle{n\choose i-1}{n\choose j-1}\), où \(\lambda\in\mathbf{R}_+^*\).
[planches/ex4055]
Montrer que \(\lambda=\displaystyle{1\over4^n}\).
Déterminer les lois de \(X\) et de \(Y\).
Les variables \(X\) et \(Y\) sont-elles indépendantes ?
Trouver à l’aide de la variable aléatoire \(X-1\) l’espérance et la variance de \(X\).
On note \(B=(b_{i,j})_{(i,j)\in[[1,n+1]]^2}\in\mathscr{M}_{n+1}(\mathbf{R})\) avec \(b_{i,j}=\mathbf{P}(Y=i|X=j)\).
Calculer \(B^2\) .
Déterminer les valeurs propres de \(B\). La matrice \(B\) est-elle diagonalisable ? Déterminer la dimension des sous-espaces propres associés.
[planches/ex5660] ccp PSI 2019 On considère \(2n\) lapins sélectionnés aléatoirement dans un enclos à lapins. La probabilité qu’un lapin soit mâle est \(1/2\). On note \(M\) la variable aléatoire égale au nombre de lapins mâles obtenus et \(C\) la variable aléatoire égale au le nombre de couples possibles (un lapin mâle \(+\) un lapin femelle).
[planches/ex5660]
Donner la loi de \(M\).
Donner une relation entre \(C\) et \(M\).
Donner la loi de \(C\).
Calculer l’espérance de \(C\).
[oraux/ex4776] escp S 2012 Une urne contient \(n\) boules numérotées de \(1\) à \(n\) et \(k\) boules bleues non numérotées. Les boules sont tirées avec remise jusqu’à ce qu’une boule bleue soit tirée. Au cours de ces tirages, on définit le nombre \(R\) de répétitions de la manière suivante :
[oraux/ex4776]
au début, \(R =0\). Ensuite, on ajoute \(1\) à \(R\) dès que l’on obtient une boule numérotée qui avait été déjà tirée précédemment.
Déterminer les probabilités des événements suivants :
\(A_1=\) « la première boule tirée est la boule numéro \(1\) ».
\(A_2=\) « la première boule tirée est une boule portant un numéro strictement supérieur à \(1\) ».
\(A_3=\) « la première boule tirée est une boule bleue ».
On note \(A_0\) l’événement « la boule numéro \(1\) n’est jamais tirée lors du jeu ». En utilisant la formule des probabilités totales avec les événements précédents, montrer que \(P(A_0) = \displaystyle{k\over k+1}\).
On note \(X\) le nombre de fois où l’on a tiré la boule \(1\) au cours du jeu. En utilisant un raisonnement analogue à celui de la question précédente, montrer que \(E(X) = \displaystyle{1\over k}\).
On définit la variable aléatoire \(Y\) par : \[\cases{\hbox{Si $X\geqslant 1$, alors $Y=X-1$}\cr \hbox{Si $X=0$, alors $Y=0$}\cr}\] (\(Y\) est donc le nombre de répétitions de la boule numérotée \(1\).)
Montrer que \(E(Y) =\sum\limits_{m\geqslant 1} (m-1) P(X = m)\) puis que \(E(Y) = \displaystyle{1\over k(k+1)}\).
Soit \(r\) un entier naturel. On recherche la valeur minimale de \(k\) (en fonction de \(n\) et \(r\)) de manière à ce que le nombre moyen \(t\) de répétitions soit inférieur ou égal à \(r\).
Montrer que \(t = n E(Y)\).
En déduire que la valeur minimale recherchée est \(k_0 = \left\lfloor{\sqrt{\displaystyle{n\over r} + {1\over4}} - \displaystyle{1\over2}}\right\rfloor\).
[probas/ex0169] hec 1995 On considère un entier naturel \(n\) non nul, un réel \(p\) de \(\left]0,1\right[\) ; \(X\) est une variable aléatoire avec \(X\hookrightarrow\mathscr{B}(n,p)\).
[probas/ex0169]
Les valeurs prises par \(X\) sont affichées par un compteur défaillant ; lorsqu’il doit afficher 0, il affiche en fait au hasard un nombre compris entre 1 et \(n\) ; sinon il affiche le bon résultat.
Soit \(Y\) la variable aléatoire correspondant au numéro affiché par le compteur. Donner la loi de \(Y\) et \(E(Y)\).
[examen/ex0901] escp courts S 2021 Soit \(X\), \(Y\) deux variables aléatoires indépendantes suivant une loi uniforme sur \([[1,n]]\), soit \(g\) une bijection de \([[1,n]]\) sur lui-même.
[examen/ex0901]
On pose \(T=g(X)\) et \(Z=\mathbf1_{[Y\leqslant g(X)]}\).
Quelle est la loi de \(T\) ? Montrer que \(n\mathbf{E}(Z)=\mathbf{E}(T)\).
Que dire de leurs variances ?
[probas/ex2052] Une pièce équilibrée est lancée trois fois. On note \(X\) la variable qui vaut 0 ou 1 suivant que face ou pile apparaisse au premier lancer, et \(Y\) est le nombre total de faces qui apparaissent. Soit \(Z=X+Y\).
[probas/ex2052]
Donner la loi de \(Z\).
Calculer \(\mathbf{E}(Z)\), et vérifier que \(\mathbf{E}(Z)=\mathbf{E}(X)+\mathbf{E}(Y)\).
Calculer \(\mathbf{V}(X)\), \(\mathbf{V}(Y)\) et \(\mathbf{V}(Z)\), et comparer \(\mathbf{V}(Z)\) à \(\mathbf{V}(X)+\mathbf{V}(Y)\).
[probas/ex2091] Deux cartes sont tirées au hasard d’un jeu en contenant 5, numérotées 1, 1, 2, 2 et 3. Soit \(X\) la somme et \(Y\) le maximum des deux nombres obtenus. Calculer la loi, l’espérance, la variance et l’écart-type de \(X\), \(Y\), \(Z=X+Y\), \(W=XY\).
[probas/ex2091]
[concours/ex4916] escp S 2001 Soit \(n\) un entier naturel non nul. Une boîte contient \((2n+1)\) jetons bicolores (une face est blanche, l’autre est noire). Les jetons sont numérotés de \(1\) à \(2n+1\) sur leur face blanche, les faces noires ne portant pas de numéro.
[concours/ex4916]
On lance simultanément tous les jetons et on observe leurs faces supérieures.
Une et une seulement des deux couleurs apparaît un nombre impair de fois. Soit \(X\) la variable aléatoire associée à ce nombre.
Déterminer la loi de \(X\).
Calculer son espérance et sa variance.
Suite au lancer, on ramasse les jetons de la couleur apparaissant un nombre impair de fois et on note les numéros de leur face blanche. Soit \(Y\) la variable aléatoire représentant le plus petit de ces nombres.
Soit \(k\in[[0,n]]\), déterminer la loi conditionnelle de \(Y\), conditionnée par l’événement \((X=2k+1)\).
En déduire la loi de \(Y\). Calculer son espérance.
[planches/ex1921] polytechnique, espci PC 2017 Une machine produit deux types de pièces : le type \(A\) avec probabilité \(a\), le type \(B\) avec probabilité \(b=1-a\). Chaque pièce est défectueuse avec une probabilité \(p\), indépendante du type, et indépendamment d’une pièce à l’autre. La machine s’arrête dès qu’elle a produit une pièce du type \(A\).
[planches/ex1921]
Soit \(X\) la variable aléatoire égale au nombre de pièces défectueuses au moment de l’arrêt de la machine. Déterminer \(\mathbf{E}(X)\) sans déterminer complètement la loi de \(X\). Commenter.
Déterminer la loi de \(X\) et retrouver le résultat précédent.
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher